
www.manaraa.com

University of South Carolina
Scholar Commons

Theses and Dissertations

Fall 2018

Algorithms for Robot Coverage Under Movement
and Sensing Constraints
Jeremy S. Lewis

Follow this and additional works at: https://scholarcommons.sc.edu/etd

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized
administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.

Recommended Citation
Lewis, J. S.(2018). Algorithms for Robot Coverage Under Movement and Sensing Constraints. (Doctoral dissertation). Retrieved from
https://scholarcommons.sc.edu/etd/5045

https://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F5045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.sc.edu%2Fetd%2F5045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5045?utm_source=scholarcommons.sc.edu%2Fetd%2F5045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu

www.manaraa.com

Algorithms for Robot Coverage under Movement and Sensing

Constraints

by

Jeremy S Lewis

Bachelor of Science
Francis Marion University 2008

Master of Science
University of South Carolina 2011

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2018

Accepted by:

Jason O’Kane, Major Professor

Ioannis Rekleitis, Committee Member

Marco Valtorta, Committee Member

Bin Zhang, Committee Member

Manton Matthews, Committee Member

Cheryl L. Addy, Vice Provost and Dean of the Graduate School

www.manaraa.com

c© Copyright by Jeremy S Lewis, 2018
All Rights Reserved.

ii

www.manaraa.com

Acknowledgments

First, I would like to thank my advisor, Jason M. O’Kane. Without your support and

push, I would not be receiving this degree. When you met me at Queen St. Grocery

in Charleston, SC while taking your son to a doctor’s appointment, you not only gave

me the motivation to get back and finish, but also the spark needed to inspire my

imagination to see something more. Thank you, Jason.

I would also like to thank all of my friends that put up with my crazy life on this

extended journey I have called a PhD. Without your support, I would not have had

those moments of peace and excitement needed to reenergize and keep progressing.

Last, but far from least, I would like to thank Brianna Dennis. She offered me

support and encouragement, but more than anything gave me her understanding.

Brianna, thank you for understanding where I am and what I have been doing. I

doubt I can ever tell you how much I needed it.

iii

www.manaraa.com

Abstract

This thesis explores the problem of generating coverage paths—that is, paths that

pass within some sensor footprint of every point in an environment—for mobile robots.

It both considers models for which navigation is a solved problem but motions are

constrained, as well for models in which navigation must be considered along with

coverage planning because of the robot’s unreliable sensing and movements.

The motion constraint we adopt for the former is a common constraint, that of

a Dubins vehicle. We extend previous work that solves this coverage problem as a

traveling salesman problem (TSP) by introducing a practical heuristic algorithm to

reduce runtime while maintaining near-optimal path length. Furthermore, we show

that generating an optimal coverage path is NP-hard by reducing from the Exact

Cover problem, which provides justification for our algorithm’s conversion of Dubins

coverage instances to TSP instances. Extensive experiments demonstrate that the

algorithm does indeed produce path lengths comparable to optimal in significantly

less time.

In the second model, we consider the problem of coverage planning for a particular

type of very simple mobile robot. The robot must be able to translate in a commanded

direction (specified in a global reference frame), with bounded error on the motion

direction, until reaching the environment boundary.

The objective, for a given environment map, is to generate a sequence of motions

that is guaranteed to cover as large a portion of that environment as possible, in spite

of the severe limits on the robot’s sensing and actuation abilities.

We show how to model the knowledge available to this kind of robot about its own

iv

www.manaraa.com

position within the environment, show how to compute the region whose coverage can

be guaranteed for a given plan, and characterize regions whose coverage cannot be

guaranteed by any plan. We also describe an algorithm that generates coverage plans

for this robot, based on a search across a specially-constructed graph. Simulation

results demonstrate the effectiveness of the approach.

v

www.manaraa.com

Table of Contents

Acknowledgments . iii

Abstract . iv

List of Figures . viii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Motivation . 4

1.3 Dubins Coverage . 7

1.4 Blind Coverage . 13

Chapter 2 Related Work . 17

2.1 Holonomic Coverage . 17

2.2 Optimal Holonomic Coverage . 18

2.3 Optimal Coverage With TSP . 20

2.4 Minimalist Robotics . 22

2.5 Blind Navigation . 24

Chapter 3 Hardness of Optimal Dubins Coverage 28

3.1 Problem Statement . 28

Chapter 4 Optimal Dubins Coverage 36

vi

www.manaraa.com

4.1 Graph Construction . 36

4.2 Graph Reductions . 40

4.3 Experiments . 43

4.4 Multi-robot Implementation . 48

Chapter 5 Blind Coverage . 56

5.1 Problem Statement . 56

5.2 Safe Actions and Possible States . 59

5.3 Characterizing The Certainly Covered Region 61

5.4 Algorithm Description . 66

5.5 Experiment Results . 74

Chapter 6 Conclusion . 82

6.1 Dubins Coverage . 83

6.2 Blind Coverage . 86

Bibliography . 94

vii

www.manaraa.com

List of Figures

Figure 1.1 A plan created with the method presented by Xu, Viriyasuthee
and Rekleitis [107] and executed by a fixed wing UAV. 6

Figure 1.2 The results of our algorithm planning to cover an environment
compared to three of our heuristics. 8

Figure 1.3 A autonomous watercraft with down-facing Hummingbird Echosounder
sonar. [62] . 9

Figure 1.4 A maze-like environment. Our algorithm generates a plan that
is guaranteed to cover the portions of this environment. Results
from several runs of the algorithm, showing the region guaran-
teed to be covered by the approach for error bounds ranging
from 0.5 degrees to 3 degrees of error on each motion, are shown.
For example, the cyan shaded region is the portion of the en-
vironment covered by a plan generated by our algorithm for a
robot that may experience up to 2 degree of error with each of
its motions. The red region (largely occluded by other layers)
is the result under a 0.5 degrees per motion error bound. 15

Figure 2.1 An environmental decomposition for a farming robot covering
a known bounded region and its translation into an GTSP [106]. . 21

Figure 2.2 An error cone from a state S along action u offset by θmax with
far boundary spans two edges of the environment. As a result,
the illustrated action u would not be in any interval of safe
actions. [72] . 25

Figure 2.3 An environment environment discretized for blind navigation
with corner-finding. [72] . 26

Figure 2.4 A plan generated using the discretized environment from Fig-
ure 2.3. The figure shows 20 simultaneous simulations of a robot
executing that plan. [72] . 27

viii

www.manaraa.com

Figure 3.1 The robot executing plan τ , at position xt, with a minimum
turn radius ρ, and a sensor footprint φ. 30

Figure 3.2 A non-convex, disconnected environment solvable by our algo-
rithm. The filled areas outlined in white are areas of interest. . . 30

Figure 4.1 Decomposing the environment into passes. [left] The original
environment P . [middle] A decomposition of P into 4 cells, each
y-monotone, via Boustrophedon Cell Decomposition. [right] A
refinement the above decomposition into 14 passes of width at
most 2φ. 37

Figure 4.2 [left] A pass Pi and its covering path segment. The shaded re-
gion area is covered by the robot’s sensor as it traverses the cov-
ering path segment. [middle] The graph vertex (P, ↑) has entry
pose (b (Pi) , π

2
) and exit pose (t (Pi) , π

2
). [right] The graph ver-

tex (P, ↓) has entry pose (t (Pi) , 3π
2

) and exit pose (b (Pi) , 3π
2

). . 38

Figure 4.3 A plan to cover to adjacent passes with an unnecessarily long
transition path between coverage paths. 42

Figure 4.4 [left] An environment wrapping around an area which does not
require coverage. [right] An environment with two areas which
do not need coverage. 44

Figure 4.5 [left] A plan of length 37,535 constructed by simulating Algo-
rithm 1 with a complete graph. [right] A plan of length 36,563
constructed by simulating Algorithm 2 with a graph with re-
stricted edges. 45

Figure 4.6 [left] A plan with length 34,278 constructed by simulating Al-
gorithm 2 with graph reduction down to specified directions.
[right] A plan with length 35,867 constructed by simulating Al-
gorithm 2 with a graph reduction to specified directions with
restricted weights. 46

Figure 4.7 [left] A plan of length 3487 constructed by simulating Algo-
rithm 2 on the graph using an alternating directions with re-
stricted weights. [right] A plan of length 3487 constructed by
simulating Algorithm 2 on the graph using a reduction to al-
ternating directions with restricted weights. 47

Figure 4.8 The results of covering the left environment Figure 4.4 with φ
constant at 10.0, varying ρ. 47

ix

www.manaraa.com

Figure 4.9 An experiment ran to cover the right environment in Figure 4.4
with φ constant at 10.0, varying ρ. 48

Figure 4.10 An experiment ran to cover the left environment in Figure 4.4
with φ varying, and ρ constant at 15.0. 49

Figure 4.11 An experiment ran to cover the right environment in Figure 4.4
with φ varying, and ρ constant at 15.0. 49

Figure 4.12 An experiment ran to cover the left environment in Figure 4.4
varying both φ and ρ. 50

Figure 4.13 An experiment ran to cover the right environment in Figure 4.4
varying both φ and ρ. 50

Figure 4.14 Satellite image of Lake Murray near Columbia, SC taken from
the Google Map web service. One target for our simulation. A
plan to cover the lake with any but the largest coverage radius
would result in an extremely long coverage path. 51

Figure 4.15 A coverage plan for a single robot generated by our Dubins
Coverage algorithm. 51

Figure 4.16 A coverage plan using 5 robots to execute a multi-robot cover-
age plan generated by Dubins Coverage with Route Clustering
for the Lake Murray simulated environment. 53

Figure 4.17 A coverage plan using 5 robots to execute a multi-robot cover-
age plan generated by Dubins Coverage with Area Clustering
for the Lake Murray simulated environment. 54

Figure 4.18 Three robots used to execute a plan generated by DCRC. 54

Figure 4.19 The planned paths for 1, 2, and 3 robots are shown in (a),
(b), and (c), respectively. The actual paths taken from global
information sensors for 1, 2, and 3 robots are shown in (a), (b),
and (c), respectively. 55

Figure 5.1 An illustration of the basic notation. At stage k, the robot
moves in direction uk + θk, from xk to xk+1, covering a portion
of the environment W along the way. Both xk and xk−1 are
points along the boundary of C. However, the robot does not
necessarily know xk, and certainly does not know θk. 57

x

www.manaraa.com

Figure 5.2 [left] An example of a safe action. [right] This action is unsafe,
because pk+1 and qk+1 lie on different edges of the boundary. . . . 60

Figure 5.3 Computing the CCR for a single safe action, as described in
Theorem 2. 63

Figure 5.4 Point p is too far from the boundary to be certainly covered by
any plan under our robot model. See Theorem 3. 65

Figure 5.5 Two faces of W , depicting the ordering of vertices along the
DCEL edges separating free space from obstacle space. 67

Figure 5.6 A face of W showing a layer of nodes generated by Algorithm 3
with a given length l, and separation o 68

Figure 5.7 Given a source node s1s2 and target node t1t2 in W and θmax,
Algorithm 4 determines that there exists at least one safe action
between the nodes—dmid, the mid-angle bisector of d1 and d2. . . 71

Figure 5.8 A feature common to many indoor environments through which
our underlying navigation method has difficulty planning due
to the limitations of the robot model. To plan a path through
the opening requires some ratio of uncertainty in state to θmax

and for sufficiently large values of θmax, there is no state into
which the planner can place the robot—for instance, l meters
away from a wall. 73

Figure 5.9 An office-like environment presenting both challenges in nav-
igation and coverage. The robot begins in the third convex
vertex from the right in the top-most section of the map and
loses the ability to connect its starting nodes with the rest of
the environment nodes when θmax is ±3. 76

Figure 5.10 An environment with a relatively large empty region as well as
obstacles inhibiting our algorithm’s localization method. 78

Figure 5.11 A simple environment with two large holes. The robot began
in the lower left corner and became stuck there as θmax reached
±3 degrees. 79

Figure 5.12 A more natural cave-like environment. As error grew, the robot
retained the ability to navigate around most of the environ-
ment, but not the ability to cover the more spacious open ar-
eas. This environment demonstrates the methods ability to deal
with non-uniform features. 80

xi

www.manaraa.com

Figure 5.13 A plot comparing the performance of the algorithm in the four
different environments when accuracy degrades as θmax is al-
lowed to grow. 81

Figure 6.1 (left)An environment for which there is no single axis of cover-
age by which translations between coverage passes is minimized.
(right)A decomposition of the environment such that it is cov-
ered along different axes. 84

Figure 6.2 A geometric representation created from a satellite map of Lake
Murray near Columbia, SC. 85

Figure 6.3 Creating a Minkowski sum from the obstacle edges of the envi-
ronment and a vector of magnitude ρ. 86

Figure 6.4 A strategy by which a robot might remain localized well enough
to guarantee coverage of a T-junction. 87

Figure 6.5 Computing the CCR for a single action from a state spanning
more than one environment edge. 93

xii

www.manaraa.com

Chapter 1

Introduction

Robots have become an accepted part of life. The U.S. Federal Aviation Administra-

tion (FAA) estimates that 5.5 million unmanned aircraft will be sold in 2018, with

an increase of 600,000 to 6.1 million units sold in 2019 [40]. The robot vacuum man-

ufacturer iRobot boasted a 34% increase in revenue in 2017 after a year of focused

marketing of their home robots [57]. Boston Dynamics has created a collection of

robots capable of running, jumping, and carrying loads as a pack-mule with move-

ment schemes ranging from two and four-legged walking robots to legged robots with

wheeled feet and blends of wheels and legs [19].

One task to which any of these robots may be placed is coverage. Coverage is

the task of visiting every point in a finite space. When every point is visited, the

space is covered. Obviously in any space (no matter how small) every point cannot be

individually visited, therefore we define coverage as: given a known environment and

a robot, pass the robot within a specified range every point in the environment [29,

30, 47]. A solution to the problem can be stated as a path which passes within the

specified range of every point in the environment.

1.1 Motivation

The coverage problem has very real-world and in-demand applications. Consider the

iRobot Roomba vacuum cleaner which works by passing its cleaning surface over

all parts of a floor, as does a robotic lawn mower in a yard. Both of these robots

1

www.manaraa.com

are solving the coverage problem [94]. Similar to both vacuuming and lawn mainte-

nance, humanitarian de-mining operations [87] require the solution to this problem

with much more costly consequences for an incorrect or incomplete plan. Robotic

farming has also arrived, with some implementations using a manipulator and spe-

cially constructed environment to maintain the plants [41]. Though it seems like a

very different application, a coverage problem exists because the manipulator must

visit different locations in the environment without necessarily knowing ahead of time

which areas must be visited.

Another task which can be solved as a coverage problem is surveillance with lim-

ited or inhibited sensor range. Ideally, one has enough sensors to passively monitor

an environment completely. Some environments are too large to be reasonably moni-

tored in this fashion. In this case, mobile robots carrying the sensors may be deployed

to monitor an area too large for the sensors to be arranged within some distance of

every point in the environment. The robots move around the environment providing

complete and continuous coverage [82]. Search-and-rescue [21] is a very important

coverage problem in which lives may be saved. Even painting [11] is an instance of

the coverage problem.

To solve a coverage problem, one must also solve the navigation problem. Plainly

put, navigation is the task of moving a robot from one point to another with consider-

ation to the means by which a robot translates. Though simply described, navigation

problems are anything but simple to solve. Robot navigation problems are made diffi-

cult due to the problems of state estimation, physical capabilities (and in-capabilities)

of physical devices, and environmental concerns such as dangers to the robot or dan-

gers to the environment by the robot. These challenges aside, there is still the actual

problem of developing a plan to move to a point from another through a space which

may not allow any direct path. If the path between a robot’s location and goal

location is not simple, it might require a motion planner.

2

www.manaraa.com

A navigation problem is stated in terms of a location or series of locations to

which a robot must translate via motions. A planner used to generate solutions to

robot problems involving navigation is a type of motion planner. When describing

a problem using a physical, sensing, actuated device—a robot—the solution may be

modeled as a sequence of possible robot motions (or actions). Solutions of this sort

are usually generated by open-loop offline planners. The problem may be stated in

terms of an input or initial state (or not, in the case of a kidnapped robot with

recovery [28,35]) and a goal state. The solution is a sequence of robot actions which

result in the goal state. Solutions exist in one of two forms: probabilistic, in which a

solution is given with some likelihood of success and deterministic, in which success

is guaranteed within the bounds of the system. In contrast to the planner thusly

described, an online closed loop planner would specify an action for any point at

which the robot may find itself.

Another possibility is to use both types of planners. A global planner produces

an ordered set of points through which the robot must pass. The robot then uses a

local planner to generate an online policy which maps its current location and goal

location to an action. As in [88], it is not uncommon for there to exist multi-stage

planners that combine global and local planners. In this separation of concerns, a

global planner may run offline to generate an overall or large scale plan, while a local

planner runs online to execute the plan.

In large-scale navigation (and therefore coverage) problems, state estimation is

hard because the inaccuracies of actuations accumulate and sensors might not be

powerful enough to directly offset positional uncertainty. Planners must either be

provided a sensor with some global frame of reference to ensure their prescribed

actions result in the correct state or must schedule actions to reduce uncertainty. It

is even possible to have a motion planner—or part of a motion planner—dedicated

to localization [72,80,81].

3

www.manaraa.com

In addition to the problem of state estimation, environmental complexity and the

movement constraints of the covering vehicle can be problematic. Less irregular and

obstacle-free environments allow a larger solution space, while environments with ob-

stacles and irregular shapes reduce the number of reasonable coverage plans. Vehicles

with holonomic movement constraints can follow paths along any trajectory and so

do not limit the solution space. Robots with non-holonomic constraints are restricted

in their movement and so restrict the solution space further, possibly resulting in an

empty space.

Even when a solution to the problem exists, it might be a terrible solution. It

is trivial to say that a robot with a known fixed-area sensor must follow a path of

some minimal length to cover an area with that sensor. An optimal solution would

be one which is no longer than the theoretical minimum necessary for coverage. A

non-holonomic vehicle may not even be able to follow this minimum path and so there

may exist a different minimum length for any given non-holonomic vehicle type. Note

this is not a pedantic question. A less optimal solution is a more expensive solution

in both time and resources; energy, likely, is the most scarce. Given the expansive

areas some planners are given to find coverage, a poor enough plan might not even

be implementable. At a minimum, execution will need to be halted for refueling.

1.2 Motivation

Optimal plans with holonomic constraints

At the time of this work, the state of the art for generating optimal coverage plans

is in the work by Xu, Viriyasuthee, and Rekleitis [107]. The authors present a very

fast algorithm constructing a plan for a vehicle to cover a known region. Their

algorithm depends on a seed-spreader coverage technique. That is, a back-and-forth

linear motion from one environment edge to another. After each motion, the robot

4

www.manaraa.com

makes a motion perpendicular to its direction of coverage, a distance equal to its

sensor’s radius. They use a cellular decomposition to break their environment into

regions, each capable of being covered by a seed-spreader motion plan. The plan is

executed by a UAV with GPS-enabled way-point following. The results are shown

in Figure 1.1. It is evident that entry and exit from coverage area—the area outside

of the shadowed regions—is problematic. The region covered by the sensor creates

coverage paths which are too close together which results in a key-hole flight path, at

best. The planner is unable to take into account that the distance between successive

coverage passes is greater than twice the vehicle’s turn radius.

Due to the deconstruction method, their algorithm must also consider large sec-

tions of the to-be-covered regions in isolation. One side-effect of the discretization

is apparent in upper shadowed region of the map (a) in Figure 1.1. Because the

planner must consider regions across the shadowed area in isolation, it cannot choose

to cross back-and-forth between them. The large loop which crosses the entirety of

the shadowed region’s width there cannot, instead, continue on and cover a portion

of the area to the right of the shadow.

If the region to be covered is large enough, then covering from one “side” to

the other and the translating back might be a costly decision. Ideally, the planner

should plan coverage both beginning and ending at the starting point with coverage

occurring constantly between. Their algorithm does just this; however, due again to

their discretization, undesirable behavior sometimes occurs. Consider the coverage

plan above and below the shadow in image (a) or left and right of the shadow in

image (b) of Figure 1.1. Those large regions are split perpendicular to the axis of

coverage. This allows the authors’ algorithm to plan a coverage path “out” from the

starting point and then back “in” to the starting point.

The authors present a very fast algorithm for covering a large space with a mobile

robot. That speed is due to their discretization of the environment and use of the

5

www.manaraa.com

Figure 1.1 A plan created with the method presented by Xu, Viriyasuthee and
Rekleitis [107] and executed by a fixed wing UAV.

seed-spreader behavior. But if an optimal path is to be planned, then at a minimum

the planner should be able to make global decisions based on the robot’s motion

constraints. Also, it would need to be aware of the difference between obstacle space—

through which translation is impossible or at least very expensive compared to free—

and space that is just not interesting to cover. In Section 1.3 we introduce our

algorithm which does just that.

Complex robots

As in the work described above [107], when solving coverage problems it is common

to assume the navigation problem is solved [67, 102]. To enable this assumption,

either a carefully crafted environment must be engineered or a host of sensors are

required. Additionally, a local planner is required to execute the plan generated by

the global planner along with powerful enough processing to execute that planner

before or along with the local planner. This combination means that planning must

be done, at least partially, online. While this is acceptable for many problems, the

cost of the robot necessary to execute plans may prohibit its application. When the

iRobot Roobma presented its solution to the consumer-grade automated vacuum,

6

www.manaraa.com

it used a mostly random algorithm to provide coverage [56]. iRobot increased the

robot’s sensors to include an IR sensor. This iteration of the robot performs SLAM

to solve the coverage problem. These changes increase the cost of the device and

introduce more points of failure.

However, if one agrees with Occam and what is wanted or required is a very sim-

ple robot model which can make guarantees of coverage, Section 1.4 introduces our

exploration of an incredibly simple robot model, which despite error-prone motions

can make guarantees on environment coverage. Our algorithm solves both the navi-

gation problem and coverage problem with an offline planner and is able to provide

the portion of the environment for which it will certainly cover.

1.3 Dubins Coverage

Our first main contribution is an algorithm that improves upon Xu, Viriyasuthee,

and Rekleitis [107] by providing a novel deconstruction method for a known environ-

ment which allows for optimal-length paths. Our solution addresses the problem of

generating a circuit—the shortest path visiting every necessary point while starting

and ending at a given point—by providing a means for a natural shortest path out

and back. The planner may skip areas while covering out toward the furthest points

from the starting point using them to return while covering if that results in a shorter

path.

In addition to considering generating a circuit, the deconstruction also allows a

planner to choose the next best step with respect to both distance between steps

and movement constraints of the robot. Using this deconstruction, the seed-spreader

behavior is not necessarily prescribed, but may be “discovered” by the planner.

Using our deconstruction, in Chapter 3 we prove that calculating the optimal

path to cover an environment is an NP-Hard problem. Given that knowledge, we

7

www.manaraa.com

Figure 1.2 The results of our algorithm planning to cover an environment
compared to three of our heuristics.

present a family of heuristics to improve the runtime of coverage path calculation.

The algorithms are run against several simulated environments and their performance

evaluated. Figure 1.2 presents the results of our implementation with the complete

graph provided as a baseline along with our heuristics’ performance.

In Chapter 4 we address the well-known problem of coverage with a vehicle with

non-holonomic movement constraints. We address the problem of large coverage plans

and the need to minimize the length of those plans. We select a common movement

constraint—the restriction of the minimum turning radius of a vehicle. This is a

common restriction in aircraft, water surface, and vehicles using Ackermann steering.

To find paths which these vehicles may follow, we consider a planner which must

generate actions a Dubins vehicle could execute [33]. We specifically seek sequences

of actions a fixed-wing aircraft performing aerial coverage with a camera or a surface

water vehicle performing coverage of bodies of water with sonar could execute.

The above scenario is often considered by researchers solving coverage problems

due to its immediate experimental and real-world capabilities. The specific robot

we imagine executing our plans is a water surface vehicle with a down-facing sonar,

similar to the one shown in Figure 1.3 a vehicle used by Kimball, et al. [62]. Our initial

8

www.manaraa.com

Figure 1.3 A autonomous watercraft with down-facing Hummingbird Echosounder
sonar. [62]

application is providing automated coverage for depth maps of the floors of bodies

of water. An immediate usage of this research is in maintaining maps of depths of

channels used by ocean-going container ships. Other applications might study coral

reefs with an additional RGB camera.

We begin with the case of a water surface vehicle, assuming the environment and

a portion of its surroundings are sufficiently deep enough to avoid collisions. Aircraft

are assumed to be flying high enough to avoid environmental intersection and extend

this to problems involving robots performing coverage in water deep enough to avoid

collision. We then define the portion of the environment as “don’t care” regions. This

gives us regions we care about covering and regions about which we do not. This

formulation we call Dubins coverage.

One common approach to coverage is using a method known as boustrophedon

coverage or “the way of the ox.” A vehicle following this path enters the coverage

area, continues to the end of the area, performs a rotation of π, re-enters the coverage

region, and repeats the process. This process gets its name from the way an ox is

used to pull a plow up and down a field. A vehicle using this method requires

a “sweep-able” [18] or monotone polygon [86]—that is a polygon monotonic with

respect to one axis. The vehicle can complete coverage by simply executing the

9

www.manaraa.com

boustrophedon coverage method as described, along linear sweeps aligned with the

axis to which each cell is aligned. There exists an algorithm named for this type of

coverage, discretizing an environment into monotonic cells which are well-suited for

boustrophedon coverage.

This process is called boustrophedon cellular decomposition (BCD) [4, 25, 30].

Each cell of the decomposition is typically, and independently, covered by a bous-

trophedon coverage plan. Because the cells are covered independently, most of the

decision planning lies in ordering and modifying the cells for coverage. A common

means of decomposition is to run a sweep line over the environment, beginning and

ending cells at critical points of the environment. After decomposing the environment

and sequencing the resulting cells, an algorithm encodes the boustrophedon coverage

paths into a coverage plan for the environment. A more in-depth discussion of the

method [107] appears in Section 2.

The water surface vehicle is assumed to have complete information about its state

and environment. This is accomplished using global positioning sensors as well as

a depth camera. Practical implementations using vehicles with Dubins kinematics,

such as boats [44] or fixed wing UAVs [85], often do not address the constraint while

planning a solution to the coverage problem, leaving the low-level controller to handle

the trajectory generation. Our planner builds plans to specifically address the move-

ment constraints of the vehicle while still leaving a local planner to handle following

the path. A rigorous definition of our problem appears in Chapter 3.1.

Though BCD with boustrophedon coverage leads to very fast solutions and online-

capable planners, there are some downsides: the planner cannot consider the way

in which each cell is covered in context of the larger problem, cannot consider the

turning constraints of the robots executing them, and may have to modify the cells.

In this dissertation takes a different approach—we blend the coverage of individual

cells with the ordering and sequencing in an attempt to paths which provide coverage

10

www.manaraa.com

plans considering the movement constraints of the environment.

Minimal decomposition

Our goal is to select tuples specified by the point at which the action should be

executed, the action given as a direction (speed is constant), and a duration to execute

the action, representing some “atomic” unit of coverage at a specified heading. In

the extreme case, one might consider the coverage provided by every action starting

from every point in the environment of every duration. This would result in quite a

few actions; an infinite set of actions to be exact. To make the number finite, our

decomposition in Section 4.1 leaves us with a set of objects representing the minimal

amount of coverage which would be accomplished with a prescribed linear pass over

the environment along some axis (as defined in Section 3.1). The starting point is

specified and rather than storing duration, we store the resulting end point of the

action.

We begin with a line sweep BCD to generate the cells which are known to be

coverable by a boustrophedon path. We then further split the cells into passes along

the same axis as the sweep line generating the cells. The splits should be of width

no greater than the diameter of the robot’s coverage sensor. The process results in a

set of passes which, if all covered mean that the environment is covered. If the cells

are decomposed into these passes, an obvious choice is to create a graph with nodes

representing the passes and edges representing the distance between the nodes. It

is also obvious at this point that coverage requires a path through the environment

visiting each cell exactly once. This is, of course, an instance of the Traveling Sales-

man Problem (TSP). To achieve optimality, however, one must consider that a pass

or vertex could be visited in one of two directions along the given axis. In this case,

there must actually be two nodes in the graph—one representing the pass covered in

each direction. We note that both nodes need not be visited. Covering the pass in

11

www.manaraa.com

one direction is as good as the other. In this case, we group each pair of nodes into

a set and the problem generalizes to a special instance of the TSP called set TSP

(sTSP) or General TSP (GTSP).

Proof of hardness

Solving a TSP as part of a planner may seem like an overestimation of the complexity

of the coverage problem, however we prove in Chapter 3 that Dubins coverage is an

NP-complete problem. Our proof draws heavily from Padimitriou’s proof of the

Hardness of the Euclidean traveling salesman problem [83] and Savla, Frazzoli, and

Bullo’s work on the hardness of the Dubins traveling salesman problem [96] to perform

a reduction from the Exact Coverage problem.

Heuristic

This is bad news for optimal coverage plans which consider the robot’s movement

constraints. The good news is that because the runtime of TSP experiences non-

polynomial growth in the number of nodes and edges. In Chapter 4.2 we devise and

compare several heuristics by which we reduce the number of one or both. Though

optimality is marginally reduced, we achieve much better run times.

In a general sense, a heuristic’s goal is to reduce choices which are not likely to

lead to an optimal solution, while preserving many of the choices which do. Our first

and most aggressive attempt simply specifies the direction which selects which of the

two nodes in each set is kept—it drops half of the nodes and connected edges in the

graph. The other three are less aggressive, selecting edges which are less likely to be

included in a minimal circuit.

We present the performance of our planners in Section 4.3 and demonstrate a

clear winner. In the analysis of the planner, it is clear when boustrophedon coverage

is the optimal decision and when it is not.

12

www.manaraa.com

Multi-Robot Extension

Finally, as is typical in many robot applications, the question must be asked, do

"many hands make light work?" In Section 4.4 we answer that question and present

extensions to our algorithm.

1.4 Blind Coverage

In the previous formulation, state is known at every point of execution and no steps

need be taken for localization. Next, we consider the same problem without move-

ment constraints—using a holonomic vehicle—but both reduce our information state,

knowledge of robot pose, and generate a fully offline plan. Most of the existing cover-

age techniques rely on precise control of the robot’s motion. For example, techniques

based on the boustrophedon decomposition [30, 90] require the robot to be able to

travel accurately in straight lines along the coverage passes, and also to be able to

transit precisely between the passes. The motivating example is vacuuming a bounded

space. To explore the impact of a partial information state on the coverage problem,

we say that the robot only has a bump sensor and compass. The compass is a pow-

erful sensor, because it offers a global frame of reference to combat the accumulation

of error. In practice a compass does not perform reliably, but it was shown in [72]

that a very short range sensor and map can be used to simulate a compass in this

formulation.

Specifically, we consider a robot model with only two movement primitives: First,

the robot can rotate in place to face a given direction, though this rotation is subject

to some unknown bounded disturbance. Second, the robot can move forward from its

current position until reaching the environment boundary. The robot cannot measure

the distance traveled (it has no odometer nor clock) nor does it have any other sensors

to provide feedback about its motion through the world.

13

www.manaraa.com

In this model the robot’s state is not necessarily ever known exactly, but is main-

tained as a range of possible states and all planning must take into account that lack

of specificity. In the previous formulation, all actions were either coverage actions

or translation actions. The sequence most often alternates between coverage actions

and translation actions with optimality expressed as the path with least time spent

translation. In the second model—what we call blind coverage—a lot of time may be

spent on localization actions. The primary alternative, realized with great success in

the original Roomba [100], is to move with some a degree of randomness. In that case,

one expects the probability of complete coverage to increase as the robot continues

its movement, though any guarantees are only probabilistic. In contrast, this blind

coverage considers a coverage problem in which a robot that is very simple —with no

feedback sensing, and with highly error-prone actuation— can nonetheless guarantee

to cover a certain portion of its environment.

Our interest in such simple robot models derives both from a practical desire to

limit the complexity and expense of robots deployed for such tasks, but also from a

desire to understand the underlying information requirements of robot coverage. Our

algorithm computes a sequence of motions for the robot to attempt to cover as much

of the environment as possible before returning to its start state. As stated above,

the algorithm must confront the dual challenges of navigation and coverage:

Navigation with this robot model can be challenging because the available sensor

data is so limited, the robot may easily lose track of its own position; coverage with

this robot model can be challenging because if the robot does not know its own

position with relatively high accuracy, it cannot be certain of which parts of the

environment are being covered.

Figure 1.4 shows an example of our algorithm’s output, in which the differently-

colored shaded regions illustrate regions that can be covered by this approach for

varying bounds on the amount of rotational error.

14

www.manaraa.com

Figure 1.4 A maze-like environment. Our algorithm generates a plan that is
guaranteed to cover the portions of this environment. Results from several runs of
the algorithm, showing the region guaranteed to be covered by the approach for
error bounds ranging from 0.5 degrees to 3 degrees of error on each motion, are
shown. For example, the cyan shaded region is the portion of the environment
covered by a plan generated by our algorithm for a robot that may experience up to
2 degree of error with each of its motions. The red region (largely occluded by other
layers) is the result under a 0.5 degrees per motion error bound.

.

15

www.manaraa.com

The idea of the algorithm is to construct a directed graph. Vertices of the graph

represent contiguous sets of possible states, represented as line segments along the

boundary, in which the robot might know its true state lies. Edges of the graph

correspond to achievable transitions between these segments, labeled with the region

that is guaranteed to be covered by that transition. After constructing this graph, the

planning algorithm is then a process of identifying edges that (a) would be beneficial

to cross because they would cover some new portion of the environment, (b) can be

reached from the starting position, and (c) can be returned from.

16

www.manaraa.com

Chapter 2

Related Work

2.1 Holonomic Coverage

The various flavors of coverage problems have been studied so extensively that a

full review is impossible here. Recent research has studied the role of environment

decomposition [3, 46, 55, 108], particularly on grids: [7, 42, 53, 91]; coordination of

multiple robots [12,60,61,63,89,90,109]; and different path types such as spirals [24,51]

or Dubins curves [61,71,95,106,107].

We refer the reader to the surveys by Choset [29] and by Galceran and Car-

reras [47] for a more complete picture. In our initial formulation—Dubins coverage—

we discretize and represent the environment in such a way as to make use of our

knowledge of the robot’s movement constraints to build plans for coverage. Intro-

duced by the work presented in [22, 79], we assume that a map of the environment

is provided both for path planning and coverage delineation. We also choose to use

some environmental discretization as this is known to be useful in determining when

coverage is complete as is pointed out in [29]. It is common to use “seed-spreader”

style coverage plans to cover obstacle-free cells [30, 103], therefore we seek a decom-

position which lends itself to this pattern yet we do not explicitly make use of it.

Though we are looking for a complete coverage algorithm, we do not want online

algorithms like [1,2,5,26], since we envision applications of our work repeatedly using

the coverage plan.

There are two works which must be addressed in particular. The first [107] by

17

www.manaraa.com

Xu, Viriyasuthee and Rekleitis inspired our work on an optimal solution to Dubins

coverage. The second [106], arrived at the same data structure and search algorithm

as our work and therefore need be included for sake of completeness.

2.2 Optimal Holonomic Coverage

Xu, Viriyasuthee, and Rekleitis’s planner plans for an environment that is considered

to be both obstacle and free-space. We noted that obstacle space in their work is

not obstacle in the traditional sense of high cost due to intersection. Therefore, the

planner does not explicitly avoid intersection areas marked obstacle. Additionally,

each subdivision of the environment is covered nearly independent of others and

there are cases where the coverage decomposition must be updated by a potentially

non-optimal method. The three major improvements we seek to make to their work

is treating obstacle space as space which does not need be covered but offers no

additional costs, making plans to cover a decomposed cell dependent on other cells,

and avoiding manipulation of cells.

Similar to their work, we begin with a Morse decomposition of the environment

resulting in a BCD. Rather than insisting on boustrophedon paths, we allow such

paths to emerge from the planner due to them being the “best” thing the robot can

do, letting our planner decide exactly how cells should be covered. Our work also

differs from [107] in that solutions generated by the planner, contain and are guided

by the cost of movement. In [107] a boustrophedon cellular decomposition (BCD) is

used, then the edges necessary to visit each cell are produced, but the actual coverage

is left to path planning by a boustrophedon path planner. Like Tokekar et al. [98], our

algorithm results in a more fine-grain discretization. Rather than sampling however,

we slice each cell from the above-described BCD into the number of passes required

to cover it following a single axis. This discretization is used to generates plans which

18

www.manaraa.com

allow a robot to cover parts of multiple cells, rather than covering one cell at a time.

The work in [106] also considers the possibility using passes as the nodes of a

graph. They do not offer an algorithm to actually generate the graph or a means by

which the Hamiltonian cycle will be constructed or implemented. In our work, we

provide a planner using the described graph and then implement reductions of that

graph to reduce the search space of TSP.

Our work is similar to [55] and [108] in that we are attempting to partition the

environment in such a way as to make use of our knowledge of the robot’s movement

constraints. However, unlike these two works, we are not attempting to minimize

the amount of rotation to avoid the kinematic constraint. We, instead, allow the

minimum turning radius of the robot to guide our search for good plans. Like [46]

the environment is sliced in such a way as to behave as graph-like model, but instead

of a spanning tree, a graph is used.

The proposed algorithm can be extended to multi-robot systems by introducing a

negotiation protocol such as the one proposed by Kong, New, and Rekleitis [63]. Fur-

thermore, contrary to Acar et al. [3] the generated paths from the proposed algorithm

cover all available areas without a need for a backtracking step.

The metric traveling salesman problem with Dubins curve constraints, called Du-

bins traveling salesman problem, has been well studied [78, 96]. It is defined in the

same way as the TSP, but adds a new constraint—that the path to visit all nodes

must consist of line segments and curves of a given minimum radius. The Dubins TSP

is closely related to our problem. Depending on the formulation of coverage, there

is a TSP hiding inside. We show that the path to cover a corresponding coverage

problem can be extracted from a plan to visit all the nodes of a Dubins TSP.

The coverage problem for a Dubins vehicle considered in [95] addresses a similar

problem and uses a similar vehicle model, but does not use a discretization of the

environment and does not provide an algorithmic approach. Our problem differs in

19

www.manaraa.com

that we are very explicit in our decomposition and use it to guide a structured plan

to completely cover all area(s) of interest.

2.3 Optimal Coverage With TSP

Because our work builds on theirs, this chapter describes the construction developed

by Yu, Roppel, and Hung [106]. The main idea of their work was to solve a coverage

problem by mapping coverage to a, so-called, general traveling salesman problem

(GTSP). GTSP adds a set of nodesets to the nodes and edges of TSP [77]. A nodeset

is simply a set of nodes from the graph. In GTSP, rather than finding the shortest

path which visits all the nodes, the goal is to find the shortest path which visits all the

nodesets. Noon and Bean provide a construction to turn a GTSP graph instance into

an asymmetric TSP (aTSP) graph instance—that is a TSP using a graph in which

the edges (vi, vj) and (vj, vi) may not have the same weight. Commercial solvers and

optimizers are available for TSP and the work in [65] provides a mechanism to convert

aTSP to TSP, at the cost of doubling the number of nodes and edges of the graph.

Generalized TSP

Input: A weighted graph G = (V, E) and a partition of V into node-

sets S1, . . . , Sm.

Output: The shortest cycle in G that visits each nodeset exactly once.

In their 2015 work, the authors assume a given rectilinear environment with holes,

which they call convex [106]. They propose a method by with the environment

is discretized into passes which they call “tracks.” Their first step is to discretize

the environment. Though it is not explicitly described, it appears they envision a

sweep line passing along the environment in a direction perpendicular to the direction

of coverage to construct their passes. Next, they note that a given track may be

20

www.manaraa.com

covered in either of two directions perpendicular to the sweep line. These two coverage

directions become the nodes of a graph and are, each, included in a nodeset for GTSP.

They next convert their GTSP graph into an aTSP graph, the result of which can be

used to build a plan to cover the environment one track at a time, minimizing the

overall cost of time spent not covering the region as show in Figure 2.1.

Figure 2.1 An environmental decomposition for a farming robot covering a known
bounded region and its translation into an GTSP [106].

The last step the planner must take is conversion from a Hamiltonian cycle to

a coverage path plan. Though the authors offer no means by which this should be

21

www.manaraa.com

accomplished, given the nodes of the cycle it is not difficult to construct a plan by

interleaving the straight-line passes and Dubins curves between passes into a complete

coverage path plan. A planner might start with the node representing the first pass

v0, calculate the straight-line plan to cover it. Next, it would calculate the Dubins

curve necessary to translate from v0 to v1 and append that to the path and repeat

the process for each additional node/edge.

2.4 Minimalist Robotics

Our second formulation is a novel approach to the problem and to the best of the au-

thors’ knowledge, there is no work attempting coverage in a similar manner. However,

this work draws inspiration from the significant body of prior work on minimalism in

robotics.

The idea embodied in this work is related to the idea of “pre-image backchain-

ing” introduced by Lozano-Pérez, Mason and Taylor [74]. Their research describes

the notion of a fine-motion strategy as an effective counter to position uncertainty in

compliant motions. The idea in this research is similar in the way an error cone—a

range of possible uncertainty values for each translation made by a robot—will in-

crease the set of possible states from a single known state to some larger set of states

derived from a known bound on error.

Erickson, et al. [39] also use the idea of an error cone to solve a global active

localization problem. They describe a system whereby actions are carefully chosen to

drive the probability of the robot’s position toward a single cell in a coarse discretiza-

tion of the environment. Rather than using a probabilistic approach, a worst-case

analysis is used. The other obvious difference is that this is an approach to solv-

ing a coverage problem and thus points are used as landmarks, indirectly providing

additional information about the robot’s state.

22

www.manaraa.com

The idea of landmark-based navigation was also proposed by Lazanas and Latombe

[68]. They suggest the use of landmarks such that while the robot is in proximity

of a landmark, the robot is able to execute error-free actions. They also assert that

the robot is able to recognize when it has achieved its goal. In contrast, the robot

considered here has no sensor which would allow it to do so, nor will planning depend

on the robot explicitly sensing that it has achieved its goal state. The planner herein,

also, will never assume error-free actions by the robot nor an exact knowledge of any

state after leaving the initial state. Instead, a carefully crafted plan that ensures

the robot has covered the goal region at plan completion, in spite of its lack of a

goal-detecting sensor is used.

There is a similar idea in Erdmann and Mason’s sensorless manipulation [36] and

Kristek and Shell’s deform-able sensorless manipulation [64]. This work will follow

suit with an inspection of the robot’s environment, rather than any engineering of

the environment as in [74]. The synthesis of these works will result in a planner that

uses parts of the environment as landmarks, by describing a careful iterative motion

process to eliminate uncertainty periodically throughout the robot’s execution. By

determining landmarks from plentiful environment features, in this case, convex ver-

tices, a very simple robot is able to solve problems previously considered only through

changing the environment in some way or the addition of more sensors.

This approach has parallels to prior work on coastal navigation [93], but applies

in a minimalist setting, considering a robot equipped with no sensors other than

a compass and a contact sensor. This study using a very simple robot model is

motivated by the obvious desire to understand how navigation problems can be solved

with simple, inexpensive robots, but also by a broader interest in understanding

what information is truly required to complete the navigation task by minimizing the

complexity of the robot.

The goal of considering simplified sensing and actuation systems while solving

23

www.manaraa.com

meaningful problems is not new. A number of different tasks have been addressed

with this approach, including manipulation in general [9, 37, 38, 74], part orientation

specifically [8, 14,36,50,76,101], navigation [16,31,58,59,68,75], and mapping [1,26,

27, 79, 99]. More generally, others have explored the question of the minimal sensing

requirements to complete a given task [17, 32, 38]. This methodology of minimalist

robotics research can arguably be traced back to Whitney [104].

2.5 Blind Navigation

The observations necessary for blind coverage come from a previous work by Lewis

and O’Kane [72]. In this work, the authors utilize the same robot model—a robot

with a single bit bump sensor and compass—to solve navigation problems in a known

environment, so-called blind navigation. The bump sensor is considered reliable and

the compass has a known upper bound on error called θmax.

As in blind coverage, actions are simply to face a given direction and translate

until contact with a wall. As described in Section 5.2 and illustrated in Figure 2.2,

some actions are labeled safe and some unsafe, where safe is defined as a contiguous

set of points along a single environment edge.

The blind navigation problem relied a great deal on the authors’ so-called “corner-

finding” algorithm. A discretization of the environment was necessary, but was built

around the idea of bridging the line of sight between two corners which were not

“visible” to each other. Uncertainty was allowed to increase by some amount, but

then was quickly driven close to zero when a corner was visible from a position which

allowed for forward progress in navigation. The discretization, then, was built around

structures in the environment which precluded visibility such as T-junction hallways

and very long hallways as shown in Figure 2.3 and led to solutions of the form seen

in Figure 2.4

24

www.manaraa.com

θmax

u

S

Figure 2.2 An error cone from a state S along action u offset by θmax with far
boundary spans two edges of the environment. As a result, the illustrated action u
would not be in any interval of safe actions. [72]

The biggest differences blind coverage and blind navigation is that we are solving a

different problem—coverage vs navigation. Additionally, we do not make use of their

“corner-finding algorithm.” Rather, we allow uncertainty to accumulate and reduce

without ever forcing the planner to elect to have the robot localize itself toward a

single point at a convex vertex.

25

www.manaraa.com

Figure 2.3 An environment environment discretized for blind navigation with
corner-finding. [72]

26

www.manaraa.com

Figure 2.4 A plan generated using the discretized environment from Figure 2.3.
The figure shows 20 simultaneous simulations of a robot executing that plan. [72]

27

www.manaraa.com

Chapter 3

Hardness of Optimal Dubins Coverage

In this chapter, we analyze the difficulty of planning an optimal coverage path for

a Dubins vehicle—that is, for a robot that moves forward at a constant speed, con-

strained by a minimum turn radius. We call this problem Optimal Dubins Coverage

(ODC).

3.1 Problem Statement

In this section, we formalize the ODC problem.

Robot Model

This work makes the common assumption that the robot’s shape is irrelevant with

respect to its workspace. If this is not true, its shape is treated, without loss of

generality, as a disk exactly large enough to contain the robot’s true geometry. With

this assumption, the robot is modeled as a point in a plane with orientation. Its state

space is defined as R
2 × [0, 2π). The robot is described by a discretized time model

such that at any time t, its pose is defined as the tuple (xt, θt). The robot’s position

in the plane is xt ∈ R
2 and its orientation is θt ∈ [0, 2π).

The robot’s translations are limited by a constraint on its minimum turning radius

ρ, and a constraint that movement maintains a constant forward speed, assumed

(without loss of generality) to be 1. These constraints result in a vehicle capable

of following only Dubins paths [33]. It is important to note that one of a Dubins

28

www.manaraa.com

vehicle’s constraints is the vehicle’s forward momentum must be maintained. Many

path-planning algorithms assume the robot can both stop and back up as a means to

get arbitrarily close to an obstacle, before backing away maintaining the minimum

turning constraint. Unfortunately we cannot relax the constraint as we would like our

planner to handle vehicles like fixed-wing UAVs. Included in the robot’s translations,

but not explicitly modeled, is some means of maintaining a workable bounds on error.

We assume the robot has access to a global positioning system, without requiring that

we model the process of bounding error.

The robot has a sensor which allows it to observe a disk centered on its position

with radius φ. Observations given by this sensor are left purposely vague as they

have no bearing on the robot’s pose. They are not used explicitly by the planner

in any way except to note the area which each would cover. We further make the

assumption that sensor readings are continuous or can be taken often enough and

that t is small enough that overlapping sensor readings form a region with a static

width of φ. This assumption is necessary for our planner to achieve coverage.

Figure 3.1 illustrates the robot model notation.

Environment Representation

As is typical in a coverage problem, the planner has a complete and accurate map of

the environment or its boundary. From that map, we consider a bounded polygonal

subset of the plane, denoted P ⊂ R
2. Few restrictions are placed on P , as the problem

must include possibly disconnected and/or non-convex areas of interest as illustrated

in Figure 3.2. Currently there are no areas of obstacle space and translations between

disconnected regions are assumed to be possible without consideration of collisions

with the environment. This is not an unreasonable expectation as both aerial and

aquatic environments often provide such.

Coverage is described as the problem of passing a robot or robot’s sensor over

29

www.manaraa.com

ρ

τ

xt

φ

Figure 3.1 The robot executing plan τ , at position xt, with a minimum turn radius
ρ, and a sensor footprint φ.

Figure 3.2 A non-convex, disconnected environment solvable by our algorithm.
The filled areas outlined in white are areas of interest.

30

www.manaraa.com

every portion of a known environment. To restate the problem as a motion planning

problem, we say that our goal is to generate a plan τ , obeying the robot’s motion

constraints, defined as

τ : [0, T] −→ R
2 × [0, 2π) , (3.1)

in which T is a finite termination time for the plan. We call τ a coverage path if, for

every point p ∈ P , there exists a time t ∈ [0, T] for which

|xt − p| ≤ φ. (3.2)

The intuition is that as the robot executes the plan τ , its sensor will pass over

every part of the areas of interest. Our goal is to compute an optimal coverage path,

in the sense of minimizing the termination time T . We realize the minimization by

selecting the shortest path with covers every point in the environment. As there

is some fixed minimal coverage necessary for a finite-sized sensor to pass over every

point in the environment, the optimization comes in deciding how the robot translates

from covering states through non-covering states.

Optimal Dubins Coverage Problem (ODC)

Input: A polygon P , sensor footprint φ, and minimum turning radius

ρ.

Output: A plan τ of minimum length, which when followed by a

robot with sensor footprint φ and minimum turning radius ρ results in

coverage of the polygon P .

We establish that Optimal Dubins Coverage (ODC), when cast as a decision

problem is NP-Complete. Specifically, we consider the following problem.

31

www.manaraa.com

Optimal Dubins Coverage (Decision Version)

Input: A polygon P , sensor footprint φ, minimum turning radius ρ,

and d ∈ R
+.

Output: YES if there exists a τ , which when followed by a robot

with sensor footprint φ and minimum turning radius ρ which results in

coverage of the polygon P with length such that |τ | ≤ d, NO otherwise.

The proof, which proceeds by reduction from Exact Cover [48]—a known NP-complete

problem—draws heavily from existing hardness proofs for the Euclidean Traveling

Salesman (ETSP) [52,83] and Dubins Traveling Salesman (DTSP) [78] problems.

In what follows, we write ETSP(Q) to refer to the length of the shortest path that

visits each of the points in Q. Likewise, we write DTSP(Q, ρ) for the length of the

shortest Dubins curve with turning radius ρ that visits every point in a given finite

set of points Q.

The Exact Cover problem from which we reduce is defined thusly.

Exact Cover (EC)

Input: Two families F and F ′, of subsets of a finite set U .

Output: YES if F ′ is a subfamily of F consisting of disjoint sets, such

that F ′ covers U , NO otherwise.

Papadimitriou [83] describes construction that maps an instance of EC to a set

points Q = {q1, . . . , qm} in the plane with size O(n2), the problem size of EC. The

construction also produces numbers L and δ, and provides two guarantees. If the EC

instance has a solution, then

ETSP(Q) ≤ L. (3.3)

If the EC instance has no solution, then

ETSP(Q) ≥ L + δ. (3.4)

32

www.manaraa.com

Our reduction from EC to DCov utilizes this construction directly. Given an

instance of EC, we form an instance of DCov as follows.

1. Execute Papadimitriou’s construction to obtain Q, L, and δ.

2. Choose, for the minimum turn radius ρ, any positive value

ρ ≤ δ

2mκπ
, (3.5)

in which κ ≈ 2.6575 is the constant the appears in Ny, Feron, and Frazzoli [78].

3. Choose, for the sensor footprint φ, any positive value

φ ≤ δ/(2m)− κπρ. (3.6)

Note that Equation 3.5 guarantees the existence of a positive φ satisfying this

constraint.

4. Select P =
⋃

q∈Q S(q, φ), in which S(x, r) refers to an axis-aligned square cen-

tered at x, with diagonal length r.

5. Set

d = L + κ⌈n/2⌉πρ. (3.7)

This construction clearly takes polynomial time. To show that it is indeed a

reduction from EC to DCov, we will use three lemmas, two from the literature and

one original.

Lemma 1. (Savla, Frazzoli, and Bullo [96], Theorem 4.2) There exists a constant

κ < 2.658 such that, for any finite set of points Q and any turning radius ρ, we have

ETSP (Q) ≤ DTSP (P, ρ) ≤ ETSP (P) + κ
⌈

n

2

⌉

πρ. (3.8)

Lemma 2. (Savla, Frazzoli, and Bullo [96], Theorem 3.1) For two planar poses whose

positions are separated by distance d, the shortest Dubins curve connecting those poses

has length at most d + κπρ.

33

www.manaraa.com

Lemma 3. For any set Q of m points in the plane, any sensor footprint φ and any

minimum turning radius ρ, let P =
⋃

q∈Q S(q, φ). Then we have

DCov (P, ρ, φ) ≤ DTSP(Q, ρ) (3.9)

and

DTSP(Q, ρ) ≤ DCov (P, ρ, φ) + 2m(φ + κπρ). (3.10)

Proof. For Equation 3.9, observe that, when the robot is at any point q ∈ Q, its

sensor footprint covers all of S(q, φ). Therefore, any path which visits each point in

Q also covers all of P .

For Equation 3.10, consider a coverage path τ for P . We form a new path τ ′

identical to τ , except that we insert some additional path segments to guarantee that

τ ′ passes through each q ∈ Q. Because τ is a coverage path for P and Q ⊂ P , we

know that for each each q ∈ Q, there exists some t at which the robot’s position

x(t) passes within distance φ of q, that is, |x(t) − q| ≤ φ. At this point, we insert

into τ ′ a Dubins curve from τ(t) to q (with arbitrary orientation) and from this pose

back to τ(t). Lemma 2 ensures that each of these two path segments have length no

longer than φ + κπρ. The total length of all of these ‘repairs’ is therefore bounded

by 2m(φ + κπρ), completing the proof.

We can now state the main result of this section.

Theorem 1. ODC is NP-hard.

Proof. Reduction from Exact Cover, using the construction outlined above. We need

to show that the EC instance has a solution if and only if the corresponding DCov

instance (P, φ, ρ, d) has a coverage path of length at most d. We write Q to denote

the finite point set generated by Papadimitriou’s construction.

34

www.manaraa.com

Suppose the EC instance has a solution. Then we have

DCov(P, φ, ρ) ≤ DTSP(Q, ρ)

≤ ETSP(Q, ρ) + κ
⌈

m

2

⌉

πρ

≤ L + κ
⌈

m

2

⌉

πρ

= d.

Here we have used, in order, Lemma 3, Lemma 1, Equation 3.3, and Equation 3.7.

For the other direction, suppose the EC instance has no solution. In that case,

we know

DCov(P, φ, ρ) ≥ DTSP(Q, ρ)− 2m(φ + κπρ)

≥ ETSP(Q, ρ)− 2m(φ + κπρ)

≥ L + δ − 2m(φ + κπρ)

≥ L

≥ d

These inequalities derive from Lemma 3, Lemma 1, Equation 3.4, Equations 3.6 and

3.5, and Equation 3.7 respectively.

Corollary 1. DCov is NP-Complete.

Proof. It remains only to show that DCov is in NP. We can use the coverage path

τ as the certificate, and compute the region covered by τ , a finite union of circles

and rectangles. Then verify (1) that this region is a superset of P using a standard

clipping algorithm, (2) that the length of τ is at most d, and (3) that τ is indeed a

Dubins curve for turning radius ρ.

35

www.manaraa.com

Chapter 4

Optimal Dubins Coverage

Chapter 3 introduced Optimal Dubins Coverage (ODC) and proved that is an NP-

Hard problem. We also define, with rigor, the problem we seek to solve. In this

chapter, we present our formulation of the ODC problem, a means by which to map an

environment to a graph for GTSP, and a family of algorithms to reduce the complexity

of the graph to improve the runtime while maintaining a good approximation of the

correct answer. Finally we present an extension to a multi-robot formulation in the

work by Karapetyan et al. [61]

4.1 Graph Construction

In Chapter 3 we showed that unless P = NP , DCov cannot be solved optimally

by any polynomial time algorithm. Indeed, the best known algorithm, discussed

in Section 2.3, scales quite poorly as the number of passes increases. In addition,

the algorithm as originally presented omits a number of geometric details that are

essential for a complete implementation. In this section, we introduce an improvement

to that algorithm that generates high-quality coverage paths much more efficiently.

Algorithm 1 summarizes our approach.

Our first step in constructing a graph from which to generate plans for coverage

by a Dubins vehicle is the decomposition of P into pieces for which it is simpler to

construct coverage paths a Dubins vehicle can follow. To accomplish this, the plan-

ner partitions P into monotone regions using the boustrophedon cell decomposition

36

www.manaraa.com

Algorithm 1 OptimalDubinsCoverage(P, φ, ρ)
D ← BoustrophedonCellDecomposition(P)
P ← GeneratePasses(D, φ)
V ← P × {↑, ↓}
E ← V × V
w ← ComputeWeights(E, ρ)
(v1, . . . , vn)← SolveGTSP(V ′, E ′, w)
τ ← ConstructPlan(v1, . . . , vn)
return τ

2φ

Figure 4.1 Decomposing the environment into passes. [left] The original
environment P . [middle] A decomposition of P into 4 cells, each y-monotone, via
Boustrophedon Cell Decomposition. [right] A refinement the above decomposition
into 14 passes of width at most 2φ.

(BCD) algorithm [30] (Alg. 1, line 1). While we do not seek to encode boustrophedon-

like coverage behavior, if the planner discovers that is a valid solution, we provide a

mechanism for its selection. Next, we further refine the decomposition, cell-by-cell,

into a set P of “passes” Pi ∈ P such that each pass is a connected region that can

be covered in a single sweep from end-to-end (Alg. 1, line 2). Without loss of gener-

ality, we construct these passes with vertical orientations, utilizing divisions parallel

to the y-axis; see Figure 4.1. In a practical deployment the choice for the direction

of coverage would be affected by a variety of factors, such as, wind- or sea-current

direction, desired sensor placement, location of obstacles, etc [107], but would remain

axis-aligned.

The result is a set of passes, each no more than 2φ wide, such that the robot can

cover a pass in a single sweep of its sensor. To cover a given pass Pi, a robot must

follow a segment of the pass’s vertical bisector. We call this segment the covering path

segment for the pass. The covering path segment, specified by its top point t (Pi) and

37

www.manaraa.com

t (Pi)

b (Pi)

t (Pi)

b (Pi)

t (Pi)

b (Pi)

Figure 4.2 [left] A pass Pi and its covering path segment. The shaded region area
is covered by the robot’s sensor as it traverses the covering path segment. [middle]
The graph vertex (P, ↑) has entry pose (b (Pi) , π

2
) and exit pose (t (Pi) , π

2
). [right]

The graph vertex (P, ↓) has entry pose (t (Pi) , 3π
2

) and exit pose (b (Pi) , 3π
2

).

its bottom point b (Pi), is defined as the smallest segment along the vertical bisector

of Pi for which

Pi ⊆
⋃

q∈t(Pi)b(Pi)

B (q, 2φ)

as illustrated in Figure 4.2. When every pass Pi ∈ P is covered, then P is covered.

We must next map our passes into the vertices of a graph and create the necessary

edges. Once we have a graph and the solution to a TSP on the graph, we need only

map the circuit to a path. These steps are described below.

• The vertex set V consists of 2|P| vertices defined as V = P × {↑, ↓}. The

interpretation is that visiting a vertex indicates that the robot should cover

the given pass by traversing that pass’s covering path segment in the given

direction. For each up vertex (Pi, ↑) we define the entry pose as
(

b (Pi) , π
2

)

and

38

www.manaraa.com

the exit pose as
(

t (Pi) , π
2

)

. For down vertices (Pi, ↓), we define entry and exit

poses similarly mutatis mutandis. Figure 4.2 illustrates the construction.

• The edge set E contains 4|P|2 − 4|P| elements, connecting all pairs of vertices

excepting edges to self and edges between pairs in a set. For a given edge

eij ∈ E, its weight wij is defined as the length of a Dubins curve from the exit

pose of the source vertex vi, to the entry pose of the target vertex vj (Alg 1,

line 5).

• Given a circuit that visits, for each pass Pi, either (Pi, ↑) or (Pi, ↓), we can

directly construct a coverage path τ by alternating covering path segments with

Dubins curves between the successive passes in the circuit.

To generate the required circuit described above, we solve an instance of the

generalized traveling salesman problem (GTSP) [77].

Generalized TSP

Input: A weighted graph G = (V, E) and a partition of V into node-

sets S1, . . . , Sm.

Output: The shortest cycle in G that visits each nodeset Si, exactly

once.

This problem is readily shown to be NP-hard by reduction from the standard traveling

salesman problem and GTSP instances can be converted to instances of asymmetric

TSP (aTSP) by a straightforward linear time construction [66].

As described in Chapter 2.3, we form a GTSP instance, by partitioning the nodes

of our graph into |P| nodesets

{(P1, ↑), (P1, ↓)}, . . . , {(P|P|, ↑), (P|P|, ↓)},

each containing the two complementary vertices for a single pass. This forces a GTSP

solution to visit each pass exactly once, either its ↑ or its ↓ vertex. While the authors

39

www.manaraa.com

found no solvers for the GTSP, there exist heuristic optimizers for the aTSP are

available [73] that are fast in practice (Alg 1, line 6).

The result of SolveGTSP is a circuit providing the order in which each nodeset

should be visited. Due to our construction of aTSP from GTSP, the circuit contains

each pass in the environment twice, once for the up pass and once for the down pass

in either order. To build τ , note that the first occurrence of a pass is the correct

direction in which the pass should be covered. For each of these, we link the coverage

path segment with a Dubins curve to the first pass in the next node set given in the

circuit.

4.2 Graph Reductions

In Chapter 3 we showed that unless P = NP , ODC cannot be solved by any polyno-

mial time algorithm. In this section we provide details for a family of practical—but

not necessarily optimal—algorithms that more efficiently generate high-quality cover-

age paths. In all of our approaches, we extend our Algorithm 1 after construction of

the graph and calculation of the edge weights on Line 5 we perform a graph reduction

before solving the GTSP problem. The process is outlined in Algorithm 2.

The reason we seek to reduce the graph’s size is straightforward; even with fast

heuristic solvers, GTSP is a hard problem. Performance is directly related to the

complexity of the graph, in that the larger the number of vertices and edges, the

larger the search space. Intuitively, the more nodes which must be visited the more

complex is the circuit to visit them all optimally. Following the same intuition,

additional edges create additional options for the path to follow. Additional edges

are a boon if they result in a shorter path but offer nothing and extend the search

area by a non-trivial amount when they do not.

Using the heuristic graph reductions, we consider several variations to generate

40

www.manaraa.com

subgraphs of G, omitting some vertices and/or edges. These omissions allow us

to potentially solve the GTSP more efficiently at the expense of a possible loss of

optimality. In each case, we seek to use our domain knowledge to remove edges (or

nodes) which would not appear in an optimal circuit of the sets.

1. Specified directions — Impose an ordering on the passes in P , with the

constraint that all passes generated from a single BCD cell appear contiguously,

in order from left to right. For all odd-numbered passes Pi in this ordering,

remove the vertex (Pi, ↑) and all of its incident edges. Likewise, delete (Pj, ↓)

for each even-numbered Pj.

(Our implementation generates the ordering starting from an arbitrary ordering

of the BCD cells induced by the underlying geometric data structures. It then

sequences the passes within each BCD cell from left to right.)

The goal of this reduction is to encode the Boustrophedon coverage algorithm

into the graph. With this reduction, we expect to see plans which “discover”

that strategy.

2. Alternating directions — Delete all edges that connect vertices with the same

direction. That is, we remove any edge from an ↑ vertex to an ↑ vertex, or from

a ↓ vertex to a ↓ vertex. The effect is to force the robot to alternate between

upward and downward sweeps, without pre-specifying the coverage direction for

each pass. Our goal is to avoid the specific case illustrated in Figure 4.3

3. Restricted weights — Our last observation is that edges which are very long

represent longer periods of translation in which no planned coverage is ac-

complished. As a general means of removing those less useful edges, we first

compute the mean µ and standard deviation σ of the edge weights. Next, select

a parameter z ∈ R and delete all edges whose weight exceeds µ + zσ.

41

www.manaraa.com

Figure 4.3 A plan to cover to adjacent passes with an unnecessarily long transition
path between coverage paths.

4. Specified directions with restricted weights — We also consider removing

very long edges left after our specified directions reduction. The method

first removes nodes and edges as described in specified directions, followed

by removing edges as described in restricted weights.

5. Alternating directions with restricted weights — In the same manner as

above, we seek to reduce the search space of our alternating directions re-

duction by further reduction. In this method we first perform the edge removals

as indicated by alternating directions, followed by the reduction described

by restricted weights.

42

www.manaraa.com

Algorithm 2 EfficientDubinsCoverage(P, φ, ρ)
D ← BoustrophedonCellDecomposition(P)
P ← RefineIntoPasses(D, φ)
V ← P × {↑, ↓}
E ← V × V
w ← ComputeWeights(E)
(V ′, E ′)← ReduceGraph(V, E, w)
(v1, . . . , vn)← SolveGTSP(V ′, E ′, w)
τ ← ConstructPlan(v1, . . . , vn)
return τ

Algorithm 2 summarizes the overall approach. In the next section, we describe sim-

ulation results comparing these options.

4.3 Experiments

We implemented the above algorithms in simulation using “a hybrid mathematical

programming solver,” LocalSolver [73] as our TSP solver. LocalSolver does not solve

the TSP exactly and can get stuck in local maxima/minima. As LocalSolver does

not compute an optimal answer, it requires a halting value—either time or iterations.

Because iterations are linked to the complexity of the problem, we use this as our

halting metric. That is, LocalSolver can complete more iterations per second for

simpler problems. This gives us a means by which we may judge the reduction in

complexity of our different algorithms. In all of the examples below, we chose an

arbitrary 5,000,000 iterations as our halting condition.

The algorithms were implemented in C++ and animations were performed with

OpenGL. Below we provide results for two of the environments our planner solved.

The first environment in Figure 4.4 represents an environment with an area of interest

wrapping around an area which is not to be covered. One example is a crop-dusting

vehicle covering a similarly shaped field. The second environment in Figure 4.4 con-

tains two holes in coverage. This environment is meant to depict an area in which

43

www.manaraa.com

Figure 4.4 [left] An environment wrapping around an area which does not require
coverage. [right] An environment with two areas which do not need coverage.

we are mostly interested, but does contain regions with no value for coverage.

We first present the results of Figure 4.5, results of running Algorithm 1 on a full

graph and a graph reduced by restricting edges. Minimum turning radius ρ was set

to 30.0 and, a relative, sensor footprint φ of 5.0 was used. Both solutions τ1, τ2 failed

at finding a path which does not require a traversal of the length of a pass without

covering it. Though the emergent pattern appeared to follow a “way of the ox” [30]

coverage, the planner did make use of crossing the holes to shorten its path. With a

percent change of −2.59% from the full graph to a restricted edges graph, the planner

provides comparable results. The gain from this reduction does not seem worth the

time complexity to reduce.

Using the same φ and ρ, we ran Algorithm 2 with graphs reduced by both the

specified directions and specified directions with restricted weights reductions from

Section 4.2; see Figure 4.6 for the resulting paths. Both of these reductions fared

better than the two from Figure 4.5. The specified directions reduction had a percent

change of −8.68% from a full graph and −1.90% from restricted edge reduction.

44

www.manaraa.com

Figure 4.5 [left] A plan of length 37,535 constructed by simulating Algorithm 1
with a complete graph. [right] A plan of length 36,563 constructed by simulating
Algorithm 2 with a graph with restricted edges.

Adding the restricted weight reduction did not improve the path length from just

using specified directions.

An apparent weakness in our implementation becomes obvious in the alternating

directions reduction. We use the reduction from GTSP to aTSP described in [77]

and solve the aTSP with LocalSolver. Because LocalSolver is an optimizer and not

an exact solver, it gets stuck in local optima. This behavior often leads to paths

which violate the Noon and Bean construction from Chapter 2.3. The violation

results in paths which do not always visit all node sets of GTSP and therefore do

not cover an environment. To provide some implementation of our algorithm running

on a graph reduced to alternating edges and alternating edges with restricted edge

weights, we had to solve less complex environment and so increased φ to 45.0 and

kept the ρ from previous experiments. We ran Algorithm 2 with graphs reduced by

both the alternating directions with restricted weights and alternating directions with

restricted weights reductions from Section 4.2.

45

www.manaraa.com

Figure 4.6 [left] A plan with length 34,278 constructed by simulating Algorithm 2
with graph reduction down to specified directions. [right] A plan with length 35,867
constructed by simulating Algorithm 2 with a graph reduction to specified
directions with restricted weights.

Figure 4.7 is the result. An interesting emergence from these graph reductions was

the boustrophedon path which the robot followed. This path was the original insight

the author made from [107]—that given a knowledge of the turning constraints of a

robot it might sometimes be better to skip an environment slice and come back to

get it later.

Though a visual inspection of paths may provide insight into “attractive” paths

versus unattractive ones, data points are necessary to truly grasp the performance of

these reduction techniques. In the following set of experiments, we ran all reductions

on the two environments shown, varying ρ in Figures 4.8, 4.9 and φ in Figures 4.10,

4.11. The experiments in Figure 4.8 and Figure 4.9 held φ at a constant 10.0 and

varied ρ. The experiments in Figure 4.10 and Figure 4.11 held ρ at a constant 15.0 and

varied φ. Of the six graph type reductions, only restricted edges, complete, specified

directions, and specified directions with restricted edges, were able to regularly solve

these two environments under the varying inputs in the computation limit we gave.

46

www.manaraa.com

Figure 4.7 [left] A plan of length 3487 constructed by simulating Algorithm 2 on
the graph using an alternating directions with restricted weights. [right] A plan of
length 3487 constructed by simulating Algorithm 2 on the graph using a reduction
to alternating directions with restricted weights.

Figure 4.8 The results of covering the left environment Figure 4.4 with φ constant
at 10.0, varying ρ.

47

www.manaraa.com

Figure 4.9 An experiment ran to cover the right environment in Figure 4.4 with φ
constant at 10.0, varying ρ.

In Figures 4.9 and 4.11, results from the reductions to alternating directions and

alternating directions with restricted weights appear. The observation is that any

chance for LocalSolver to find viable solutions to these reductions occur sparsely and

for simpler input values φ and ρ.

Finding a clear and obvious winner in specified directions graph reduction, Fig-

ures 4.12 and 4.13 we ran experiments to determine how varying both φ and ρ affects

both path length and runtime.

4.4 Multi-robot Implementation

A solution to the multi-robot coverage problem is important. To cover relatively

large areas, meaning areas with small sensor radius relative to the area of coverage, a

single robot may not be enough. Figure 4.14 is a satellite image of a large lake near

Columbia, SC. The lake has a max length of 66km and max width of 23km. Plans

to cover this area could be incredibly long depending on sensor width. With a sensor

48

www.manaraa.com

Figure 4.10 An experiment ran to cover the left environment in Figure 4.4 with φ
varying, and ρ constant at 15.0.

Figure 4.11 An experiment ran to cover the right environment in Figure 4.4 with φ
varying, and ρ constant at 15.0.

49

www.manaraa.com

Figure 4.12 An experiment ran to cover the left environment in Figure 4.4 varying
both φ and ρ.

Figure 4.13 An experiment ran to cover the right environment in Figure 4.4
varying both φ and ρ.

50

www.manaraa.com

Figure 4.14 Satellite image of Lake Murray near Columbia, SC taken from the
Google Map web service. One target for our simulation. A plan to cover the lake
with any but the largest coverage radius would result in an extremely long coverage
path.

Figure 4.15 A coverage plan for a single robot generated by our Dubins Coverage
algorithm.

width of 285m, we generated a coverage plan for the environment and depict it in

Figure 4.15. As is evident, even with the large sensor width, the number of passes

required to cover the lake are enormous. Without a mobile energy source, it is likely

that an actual robot could not, in fact, complete the task.

In a collaboration with Karapetyan et al. [61] and the Autonomous Field Robotics

Laboratory (AFRL) [6], we extended the Dubins coverage algorithm to allow multi-

51

www.manaraa.com

ple robots to cooperate in coverage. In Karapetyan’s first work on the multi-robot

coverage problem, the author presents her Coverage with Route Clustering (CRC)

and Coverage with Area Clustering (CAC) algorithms [60]. In CRC, the environment

(as a binary occupancy grid) and number of robots is provided to the algorithm and

a tour is generated with algorithm from [107] and that tour is separated into a tour

for each robot using a k-postman approximation algorithm by Frederikson, Hecht,

and Kim [45]. Using the second algorithm CAC, they first break the environment

into a number of “approximately equal partitions” which act as vertices in a graph.

Next, they cluster the partitions into one subgraph for each robot and solve the Chi-

nese postman problem (CPP) for each subgraph. The tour of edges is then used to

generate a coverage plan, again using [107].

We extended this idea to generate plans for Dubins Coverage that can be executed

by multiple robots. The Dubins Coverage algorithm is used extended by both the

CRC algorithm as well as the CAC algorithm, resulting in Dubins Coverage with

Route Clustering (DCRC) and Dubins Coverage with Area Clustering (DCAC). The

first application is a very logical usage of or extension to Dubins Coverage. Dubins

coverage is used to produce an optimal tour of vertices to cover the area. Next, the

path is subdivided into approximately equally long paths, with consideration of travel

time to-and-from the beginning and end coverage tour. Shown in Figure 4.16, the

robots’ coverage regions overlap in several places, as the planner selected nodes which

do not always lead to a Boustrophedon coverage behavior. As expected this extension

improves the execution time of any plan by a factor of the number of robots used

minus some proportion of the cost to travel to-and-from where their paths start and

end.

Where DCAC improves the time to execute plans generated by Dubins coverage,

DCAC from Karapetyan et al. [61] not only does the same, but also simplifies the

problem making thereby improving the runtime. As in Dubins coverage, the envi-

52

www.manaraa.com

Figure 4.16 A coverage plan using 5 robots to execute a multi-robot coverage plan
generated by Dubins Coverage with Route Clustering for the Lake Murray
simulated environment.

ronment is first divided into regions monotonic cells, the cells are further divided

into passes, the passes are used to generate a weighted, directed graph. Next, how-

ever, the graph is divided into k subgraphs, where k is the number of robots. As in

CAC [60], each subgraph is built in consideration to how far it lies from the starting

point by adding the cost to go and return to the cost to cover. Lastly, like the CAC

algorithm DCAC (possibly) uses a heuristic reduction and the solves the GTSP for

the graph. Figure 4.17 illustrates the planner solution. It is evident that the DCAC

algorithm integrates well with Dubins coverage. The sections of the map allocated

to each robot are more tightly grouped than DCRC as expected, and the coverage

regions get smaller the further they are from the starting point.

It is interesting to note that this version of the multi-robot extension also has an

impact on the run time of the algorithm. Using O(2nn) space, the Traveling Salesman

Algorithm can be solved exactly in O(2nn2) time [13, 54] where n is the number of

nodes in the graph. Using brute force and no more space, the time complexity is

order O(n!) and whether there exists an exact algorithm that runs in O(cn) for some

c < 2 is currently an open problem [105]. Though we do not suggest this speedup

53

www.manaraa.com

Figure 4.17 A coverage plan using 5 robots to execute a multi-robot coverage plan
generated by Dubins Coverage with Area Clustering for the Lake Murray simulated
environment.

Figure 4.18 Three robots used to execute a plan generated by DCRC.

is a reason to use multiple robots, it is worth noting that a reduction to k · 2n
k · n2

k2 ,

said another way is 1
k
· 2n· k−1

k · (n · k−1
k

)2 nodes for which planning is not required.

The paths generated by the DCAC are no longer optimal, but can be generated much

faster and have the benefit of a linear decrease in time to execute the plans.

Physical Implementation

Given the superior speed in generating tours from subgraphs using DCAC versus

generating a global tour and the subdividing done in DCRC, what is lost is efficiency.

54

www.manaraa.com

Figure 4.19 The planned paths for 1, 2, and 3 robots are shown in (a), (b), and
(c), respectively. The actual paths taken from global information sensors for 1, 2,
and 3 robots are shown in (a), (b), and (c), respectively.

DCRC consistently provides a more efficient coverage path than DCAC. Because

the cost to cover is so much greater than the cost to create the coverage plan, it was

decided for field trials that DCRC would be the planner used. A section of the bottom

of Lake Murray near Columbia, SC was covered. A region was selected as map using

the Google Maps application. The map was converted into a binary occupancy grid,

representing the areas of interest for coverage. The DCRC algorithm was then given

the map along with parameters to create tours for 1, 2, and 3 robots. The ideal paths

and actual paths are shown in Figure 4.19.

The robots were equipped with a local planner, capable of executing way point

following.

55

www.manaraa.com

Chapter 5

Blind Coverage

As discussed, there is an idea shared by some roboticists—we value solving complex

robot tasks with a minimum of robot power. In an absence of powerful sensors

and actuators and knowledge, we seek to understand fundamental aspects of the

problems put to robots to solve. This chapter details our contribution to a minimalist

understanding of the coverage problem.

5.1 Problem Statement

This section provides the details of our robot model and problem.

Robot model

A disk-shaped robot with radius ρ moves through a known, bounded, planar, polyg-

onal environment W ⊆ R
2. Using the center of the robot as its reference point, the

configuration space C is the set of positions within W with distance at least ρ from

the boundary of the environment:

C = {x ∈ W | B(x, ρ) ⊂ W}.

We follow the usual convention by writing B(p, r) to denote the open ball in R
2 with

radius r, centered at p. Note that, though W has a polygonal boundary, the boundary

of C may include both line segments and circular arcs. See Figure 5.1. Informally,

the robot’s goal is ‘drive over’ —that is, to move within distance at most ρ of— as

much of W as possible.

56

www.manaraa.com

C

W

uk + θk

xk

xk+1

Figure 5.1 An illustration of the basic notation. At stage k, the robot moves in
direction uk + θk, from xk to xk+1, covering a portion of the environment W along
the way. Both xk and xk−1 are points along the boundary of C. However, the robot
does not necessarily know xk, and certainly does not know θk.

We model time as a series of discrete stages k = 1, 2, . . . , K. The robot’s state

at stage k is denoted xk ∈ C. In each stage, the robot selects a movement direction

uk ∈ [0, 2π]/∼, in which ∼ is an equivalence relation that identifies 0 with 2π. This

motion is perturbed by an unknown error θk ∈ [−θmax, θmax], in which θmax is a known

bound on the accuracy of the robot’s angular orientation. Because we are interested

in guarantees of coverage, we do assume that any probability model applies to the

selection of each θk; the disturbances may be selected at random, or adversarially, or

through any other mechanism.

From a given state xk, the robot moves in direction uk +θk. The motion continues

until the edge of the robot’s body reaches the boundary of W (or, equivalently, until

the center of the robot reaches the boundary of C.) The state resulting from from

this motion is denoted xk+1, and we denote this state transition function by f , so

that

xk+1 = f(xk, uk, θk).

57

www.manaraa.com

The starting state x1 is assumed to be known.

This robot model could be implemented, for example, with a robot equipped

with a noisy compass and a contact sensor, but no way of measuring the distances

it travels. An unusual feature of the model is that, because there is no meaningful

feedback from any sensors, the robot’s strategy can be fully described as a sequence

of motion directions. There is no need to consider any branching or looping in plans

executed by this robot.

Minimalist coverage

We can now consider the coverage problem for this type of robot.

Definition 1. A point p ∈ W is covered by a given sequence of actions u1, . . . , uK

and disturbances θ1, . . . , θK if there exist k ∈ {1, . . . , K} and α ∈ [0, 1] such that

||p− (αxk + (1− α)xk+1)|| ≤ ρ.

Note that Definition 1 refers to a specific sequence of disturbances, and recall that

the specific disturbance values are unknown to the robot. Thus, we are interested, as

the next definition clarifies, in points that we can guarantee are covered, regardless

of the specific disturbances in any particular execution.

Definition 2. A point p ∈ W is certainly covered by a given sequence of actions

u1, . . . , uK if p is covered by that action sequence under any disturbance sequence

θ1, . . . , θK.

Definition 3. The certainly covered region, denoted CCR(u1, . . . , uK), is the set of

points in W that are certainly covered by u1, . . . , uK.

The goal is to select actions that certainly cover some desired fraction of the

environment. Specifically, the problem is:

58

www.manaraa.com

Given an environment W , a start state x1, a robot radius ρ, and the

error bound θmax, select a sequence of actions u1, . . . , uK to maximize

Area(CCR(u1, . . . , uK))/ Area(W).

5.2 Safe Actions and Possible States

Because of the unknown disturbances, as the robot moves through W , it will in general

be uncertain of its position. In our approach, we reason about this uncertainty using

a worst-case model. That is, we keep track of which states are possible, based on the

history, and which are not.

Specifically, we say that a state x ∈ C is a consistent with a series of actions

u1, . . . , uk if there exists some sequence of disturbances θ1, . . . , θk, under which the

robot’s final position xk is equal to x. In our approach, we follow our own prece-

dent [72] by considering only plans for which the set of states consistent with the

action history is a line segment along the boundary of C. We write pkqk to denote

this segment of possible states at stage k. For consistency, we use the naming con-

vention that a positive rotation of the vector qk − pk about pk is into W . When the

robot’s position happens to be known with certainty (as happens, for example, before

the first action is executed) then pk = qk and the segment is a single point.

We say that an action uk is safe from a segment pkqk along the boundary of C if

the resulting set pk+1qk+1 of possible states for stage k + 1 is likewise a segment along

the boundary of C. See Figure 5.2.

Given a segment of possible states pkqk and the next action uk, we can use the

following procedure to simultaneously test whether uk is safe from pkqk and, if so, to

compute pk+1qk+1. First, we define a function ShootRay(x, u) which returns the first

point of intersection with δC from a ray emanating from the point x in the direction

u. This is a standard operation from computational geometry [23, 97]. To account

59

www.manaraa.com

qk+1

pk+1u
+
θ m

a
x

u−
θmax

qk

pk

qk+1

u
+
θ m

a
x

u−
θmax

qk

pk

pk+1

Figure 5.2 [left] An example of a safe action. [right] This action is unsafe, because
pk+1 and qk+1 lie on different edges of the boundary.

for all possible disturbances, pk+1qk+1 is calculated from pkqk as follows:

pk+1 = ShootRay(qk, u− θmax)

qk+1 = ShootRay(pk, u + θmax)

Next, we test to ensure that the area through which a translating robot may attempt

to pass between pkqk and pk+1qk+1 is fully within C. A quadrilateral is formed by

pkqk+1pk+1qk and each edge is checked against δC to ensure no intersections exist. It

is also necessary to ensure the quadrilateral contains no vertices of C to ensure no

holes are fully contained within. If the quadrilateral is indeed empty, and if pk+1 and

qk+1 lie on the same segment of the boundary of C, then uk is safe, and we return

pk+1qk+1. Otherwise, we declare uk unsafe. (A similar algorithm originally appeared

in the context of the navigation problem for a similar robot model [72].)

60

www.manaraa.com

5.3 Characterizing The Certainly Covered Re-

gion

Before considering the broader question of choosing sequences of actions to cover the

environment, we must first characterize how the CCR changes as the robot moves.

Specifically, in this section, we present two results, one positive and one negative.

First, in Section 5.3, we show how to compute the set of states that are certainly

covered by a given motion of the robot. Then, in Section 5.3, we state a condition

under which a set of points can never be certainly covered by any action sequence.

The region covered by a single movement

Suppose that, at stage k, we know that the robot’s state xk lies within some segment

pkqk along the boundary of C. From there the robot executes action uk. What can we

say about the points, if any, that are certainly covered by this motion? We must be

assured that from any point along that segment and at any perturbation of motion,

that point would be covered.

By Definition 2 we would appear to need to reason about each of the infinitely

many possible disturbances θk to establish that a point is certainly covered. Fortu-

nately, we can show that it is sufficient to consider only the extremal disturbances

−θmax and +θmax instead.

Before stating the result, we need the following preliminary definition.

Definition 4. Given two points p and p′ and a radius r the stadium between p and

p′ with radius r, denoted Stad(p, q, r) is the locus of points within distance r of any

point along the segment pp′.

Visually, the stadium between p and q is a rectangle bisected by the segment pq,

capped by two semicircles of radius r centered at p and q ().

61

www.manaraa.com

Now we can describe the region covered by a single motion.

Theorem 2. Suppose the robot has executed a sequence of safe actions u1, . . . , uk−1.

Let segment pkqk ⊂ C denote the segment of possible states at stage k. Consider a

safe action uk, and let pk+1qk+1 denote the segment of possible states resulting from

this motion. Then

CCR(u1, . . . , uk) = CCR(u1, . . . , uk−1)

∪ (Stad(pk, p′
k, ρ) ∩ Stad(qk, q′

k, ρ)) . (5.1)

Proof. First, note that for any p, if p ∈ CCR(u1, . . . , uk−1), then p ∈ CCR(u1, . . . , uk).

Thus, we need only to consider the points certainly covered by the motion from xk to

xk+1. Let R denote this set. We must show that R = Stad(pk, p′
k, ρ)∩ Stad(qk, q′

k, ρ).

(⊆) Let p ∈ R. Note that, since p is certainly covered by this motion, it must

be specifically covered in the case where xk = pk and θk = θmax. Thus, p ∈

Stad(pk, p′
k, ρ). A similar argument shows that p ∈ Stad(qk, q′

k, ρ).

(⊇) Let p ∈ Stad(pk, p′
k, ρ) ∩ Stad(qk, q′

k, ρ). We need to show that p ∈ R, which

means that for every possible starting point xk ∈ pkqk for the motion, and every

possible disturbance θk ∈ [−θmax, +θmax], the robot passes within distance ρ of

p. The set of locations from which this occurs, for a particular xk and θk, is

Stad(xk, f(xk, uk, θk), ρ). Because this must hold for all xk and θk, we know

that if

p ∈
⋂

xk

⋂

θk

Stad(xk, f(xk, uk, θk), ρ),

then p ∈ R. However, this intersection is fully determined by the two extremal

stadia Stad(pk, p′
k, ρ) and Stad(qk, q′

k, ρ), which are known by construction to

contain p. Thus p is also in R.

62

www.manaraa.com

qk+1

pk+1

pk

qk

u−
θma

x

u
+
θ m

ax

ρ

Figure 5.3 Computing the CCR for a single safe action, as described in Theorem 2.

63

www.manaraa.com

Theorem 2 leads directly to an algorithm for computing the CCR achieved by

any motion sequence: Start from the empty set, and iterate over the actions. At

each step, compute the union of the previously covered region with the intersection

of stadia described in Equation 5.1.

Regions that cannot be covered

We can use a similar idea to the proof of Theorem 2 to rule out certain states from

being certainly covered by any sequence of motions.

Theorem 3. Given a point p ∈ W , an error bound θmax, and a robot radius ρ, let q

denote the nearest point on the boundary of W to p. If

||p− q|| > ρ
tan θmax + 1

tan θmax

, (5.2)

then p cannot be certainly covered by any motion sequence.

Proof. Theorem 2 characterizes the region certainly covered at each step as the inter-

section of two stadia. This intersection is largest when the robot begins at a known

position (that is, when pk = qk) and extends the furthest into the interior of W when

the motion direction uk is perpendicular to the environment boundary. Thus, if p

can be certainly covered at all, it can be certainly covered starting at xk and moving

directly toward p. It is a simple matter of trigonometry to determine that the most

distant point this region has distance ρ tan θmax+1
tan θmax

from q. See Figure 5.4.

The intuition is that by imagining the robot at the point nearest to p, with no

position uncertainty, we construct the best-case opportunity to include p in the CCR.

If p cannot be certainly covered under those ideal conditions, then there is no hope

to certainly cover p.

64

www.manaraa.com

2θmax

q

p

xk

ρ

an
gl
e(
p
−

q)
+
θ m

ax

ang
le(p

−

q)−
θma

x

Figure 5.4 Point p is too far from the boundary to be certainly covered by any
plan under our robot model. See Theorem 3.

65

www.manaraa.com

5.4 Algorithm Description

In this section, we describe a method to maximize Area(CCR(u1, . . . , uK)). The

method takes into account the uncertain nature of the robot model’s motions and

constructs a plan which covers the environment while maintaining a set of states

known to contain the robot’s true state

The approach is divided into two parts. The first generates the graph, gener-

ating parameter-described layers of line segments on the boundary of W as nodes

(Algorithm 3), and then adding edges where there are safe actions between segments.

The second generates the actual action sequence, by determining which edges in this

graph may be traversed in a cycle (Algorithm 5).

Generating the Graph

We define an edge of W in the usual manner, as one edge of a doubly-connected

edge list (DCEL). One set of edges represents the boundary of free space, the other

set representing the boundary of obstacle space. A face is the line segment between

and including the two vertices cici+1 where i is the index of an environment vertex.

Vertices are ordered such that for an edge representing the boundary of free space,

a clockwise rotation from ci+1 − ci would be into free space. Note that we do not

directly represent both sets, only the set representing the edge of free space.

Our method of creating graph nodes was devised by Daniel Feshbach in [70] and

begins by generating the line segments for graph nodes. It creates ‘layers’ (sets)

of segments all of a given length l (Algorithm 3). An illustration is provided in

Figure 5.6. The segments may overlap, and are placed evenly along each sufficiently

long (at least as long as l) face of W , with the offset between segment starts (and

thus amount of overlap) based on parameter omax. The face is filled from one end to

the other with segments of length l, start points spaced o ≤ omax apart, until the final

66

www.manaraa.com

cj+1

ci+1

ci

cj

Figure 5.5 Two faces of W , depicting the ordering of vertices along the DCEL
edges separating free space from obstacle space.

segment ends at the endpoint of the face. The idea of how o is calculated is to fill the

face with segments omax apart until one includes the end of the face, then move the

segments closer together (preserving uniform spacing) until the final segment ends

exactly on the end of the face.

Specifically, for each face cici+1 of W where lf = ||cici+1|| and lf ≥ l and a segment

xn1
xn2

, oriented such that the start of the segment is closer to the start of the face

and the end of the segment is closer to the end of the face, i.e., ||c1xn1
|| < ||c1xn2

||

and ||c2xn2
|| < ||c2xn1

||, it adds segments xn1
xn2

, from n = 0 until some xn2
= ci+1.

67

www.manaraa.com

l

o

Figure 5.6 A face of W showing a layer of nodes generated by Algorithm 3 with a
given length l, and separation o

68

www.manaraa.com

Algorithm 3 AddLayer(W, G, l, omax, z)

1: for face c1c2 of W do
2: if ||c1c2|| = l then
3: Add segment c1c2 as a node of G
4: end if
5: if ||c1c2|| > l then

6: o← ||c1c2||−l
⌈(||c1c2||−l)/omax⌉

7: x1 ← c1, x2 ← c1

8: while x2 6= c2 do
9: x2 ← x1 translated l along c1c2

10: if z is not well defined or ||c1xi1|| ≤ z or ||c2xi2|| ≤ z then
11: Add segment x1x2 as a node of G
12: end if
13: x1 ← x1 translated o along c1c2

14: end while
15: end if
16: end for

The distance o, then, is lf −l

⌈(lf −l)/omax⌉
.

An additional parameter z is optionally defined for some layers as a limit on how

far segments in this layer can be from corners. When defined, it only adds segments

which contain some point at most z from either end of the face. Such a layer filters

the generated segments to only include those with an endpoint at most z from a

corner of the face, i.e., where ||c1xn1|| ≤ z or ||c2xn2|| ≤ z.

Algorithm 3 is called several times with different values for l, omax, and z, to build

up several distinct layers of segments. In this way, we can make the claim that if

a path exists for our coverage method, we will find it. However, we cannot claim

that when a coverage path does not exist we will terminate. In practice, a halting

condition must be established.

After the segments are generated and added as nodes to the graph, edges are

found by looping through ordered pairs of nodes and adding them where appropriate.

A directed edge exists between nodes ni and nj if there exists an action uij under

which the robot can be guaranteed a safe translation from ni to nj. To determine

whether such an action exists, it must be true that for any point along the starting

69

www.manaraa.com

node ni, representing a source segment s1s2, the action uij is safe to execute and

will arrive at the target node nj, representing a target segment t1t2. Algorithm 4

determines whether this edge exits.

The algorithm begins by calculating a range of actions [d1, d2], any of which, when

executed would result in arrival on the target node from any point along the source

node if there are no intervening environmental obstacles. The range is calculated as

shown in Figure 5.7. To assure the range is safe, it must be strictly less than π. To

be larger means that either the source’s face is “away” from the target’s or that the

target node is too small to allow for θmax error.

Next, it must be true that no obstacles exist between the nodes into which actions

from the range might carry the robot. Determining this requires two steps: checking

the boundary actions and checking the interior actions. Given that there are an

infinite number of actions in the range, we cannot check them all in finite space and

time. Instead, we observe that after checking the boundary conditions, we can instead

consider the finite points in the environment.

On lines 6 and 7, we establish that there is line of sight between the respective

ends of the source and target. This step is done by shoot ray, a well-known algo-

rithm running in O(nlog2(n)) where n is the number of vertices in W [10, 49, 92]. If

the two points returned are on nj, then any obstacles blocking translation must be

completely contained in the area between the two nodes. The algorithm finishes with

the quadrilateral described and a final pass over the vertices of W .

Each edge is labeled with this uij and the region the action certainly covers as

calculated with Theorem 2. It is worth noting that in some rare instances of small

source nodes connecting to large target nodes, separated with very small obstacles,

there might actually be cases where a disjoint range of actions is safe. That logic

is considered by Lewis and O’Kane [72], but not used here. Our method would not

create an edge.

70

www.manaraa.com

t2

t1

s1

s2

d2

d1
+θmax

−θmax

Figure 5.7 Given a source node s1s2 and target node t1t2 in W and θmax,
Algorithm 4 determines that there exists at least one safe action between the
nodes—dmid, the mid-angle bisector of d1 and d2.

71

www.manaraa.com

Algorithm 4 HasEdge(W, s1s2, t1t2, θmax)

1: d1 ← t2 − s1 + θmax

2: d2 ← t1 − s2 − θmax

3: if π < the angle from d1 to d2 then
4: return ∅
5: end if
6: p1 ← point returned by shooting ray in W from s1 along t2 − s1

7: p2 ← point returned by shooting ray in W from s2 along t1 − s2

8: if p1 or p2 are not on t1t2 then
9: return ∅

10: end if
11: q ← quadrilateral formed by s1, s2, p2, p1

12: for ci in W do
13: if q contains ci then
14: return ∅
15: end if
16: end for
17: return the mid-angle bisector of d1 to d2

Building The Coverage Plan

After the graph is generated, we have a collection of edges, each labeled with a region

of the environment that would be covered if the robot was to cross that edge. It

might tempting to simply find edges that are reachable from the start position and

greedily attempt to cross those edges representing the most coverage. The approach is

problematic because the graph may not be strongly connected due to the underlying

navigation method and limited robot model. Selecting a path that crosses one edge,

without regard for the forward connectivity of the resulting node to other locations,

may leave the robot stuck in a portion of the graph from which it cannot escape to

cover elsewhere. One of the largest challenges for our algorithm, for example, is a

common feature—a hole in a wall with no nearby faces as shown in Figure 5.8. In

this example environment, if the planner leaves the left-most section of the free space

before it is covered, it likely will not be able to return without a small θmax and very

fine discretization of the faces of W .

As a result, our approach to generating coverage plans is based on generating a

72

www.manaraa.com

s2

s1
θmax

Figure 5.8 A feature common to many indoor environments through which our
underlying navigation method has difficulty planning due to the limitations of the
robot model. To plan a path through the opening requires some ratio of uncertainty
in state to θmax and for sufficiently large values of θmax, there is no state into which
the planner can place the robot—for instance, l meters away from a wall.

series of cyclical ‘forays’ from a node containing the start position, out through the

environment to cover some new territory, and then back to the start node. To begin,

we first calculate the shortest paths between all pairs of nodes, using the Floyd-

Warshall algorithm [43]. The resulting shortest path matrix has enough information

to efficiently determine, for any ordered pair of nodes in the graph, whether a directed

path exists from the first node to the second node.

We then iterate over the edges of the graph, maintaining a sequence of actions

u1, . . . , uk planned to execute, along with CCR(u1, . . . , uk). For each each e, we check

three properties:

1. Is the source node of e reachable from the start node?

2. Is e labeled with a non-empty certainly covered region, which is not already

contained in the current CCR?

73

www.manaraa.com

3. Is the start node reachable from the end node of e?

If all three properties hold, then e represents an opportunity to cover some new

portion of the environment. In that case, we generate (using the Floyd-Warshall

matrix to determine which states to visit) actions that transit from the start node,

across e, and back to the start. For each of the edges crossed by these actions, we

include the corresponding certainly covered region in the overall CCR, and remove

them from consideration in the outer loop. (Note that some of these edges may

be labeled with empty coverage regions, for example because they correspond to

segments of uncertainty that are too large. This phenomenon explains why the final

CCR produced by the algorithm need not be a connected set, e.g. Figure 5.11)

After each edge has been considered, the planning process terminates. The results

is a sequence of actions —the coverage plan itself— that crosses every edge that can

be crossed without becoming trapped away from the start vertex, along with the

CCR corresponding to that coverage plan.

5.5 Experiment Results

We implemented our algorithm using C++ and OpenGL. We simulated a robot with

r = 0.3, and the layers of segments specified in Table 5.1 as our graph nodes. We

scaled the layer parameters and robot size relative to the size of the environment.

In an effort to characterize the performance of our algorithm as error grows, we

ran the coverage experiments several times in each environment, increasing θmax in

each iteration. In all executions the robot’s initial position is the same and affects the

coverage possible for an environment. We used a heat map to illustrate the portions

of the environment that are no longer coverable, reachable, or from which the robot

can no longer guarantee a reliable return.

We selected four environments. Figure 5.9 is a maze-like environment represent-

74

www.manaraa.com

Algorithm 5 ComputeCoverageEdges(pq, CCR, G)

1: P ← AllPairsShortestPath(G)
2: cover ← empty set of edges
3: for all e ∈ edges of G do
4: S ← P [pq][source[e]]
5: T ← P [target[e]][pq]
6: CCR

′ ← ComputeCoverage(e)
7: if S 6= ∅ and T 6= ∅ and CCR

′\ CCR 6= ∅ then
8: for all s ∈ S do
9: CCR

′

s ← ComputeCoverage(s)
10: CCR ← CCR

⋃

CCR
′

s

11: cover ← cover
⋃

s
12: end for
13: CCR ← CCR

⋃

CCR
′

14: cover ← cover
⋃

e
15: for all t ∈ T do
16: CCR

′

t ← ComputeCoverage(t)
17: CCR ← CCR

⋃

CCR
′

t

18: cover ← cover
⋃

t
19: end for
20: end if
21: end for
22: return cover

Table 5.1 Layers of Segments Used in Simulation

l (length) omax (offset) z

3 2
2 1

1.5 1
1 0.5

0.5 0.375 2
0.25 0.1 0.3

ing a building or office space. This map illustrates some of the more pronounced

difficulties plaguing the underlying navigation method. The cyan-shaded coverage

region demonstrates the planner’s inability to find a path into the T-junction near

the middle of the lower hallway at that error bound. Note that as error grew, the

planner quickly lost the ability to reliably move from the inner portion to the outer

hallway and then could no longer reliably cross from the upper section into the lower.

75

www.manaraa.com

Figure 5.9 An office-like environment presenting both challenges in navigation and
coverage. The robot begins in the third convex vertex from the right in the
top-most section of the map and loses the ability to connect its starting nodes with
the rest of the environment nodes when θmax is ±3.

.

Note also, that for all θmax, each heat map covers nearly the entire area reachable

by the navigation algorithm. In an environment like this, the coverage is predictable

because no point is distant from an environment edge. The missed coverage in the

left vertical hallway and bottom hallway are, again, due to difficulties in navigation

planning. The openings represent a difficulty in finding a small (localized) node to

which to navigate. Without the localization, coverage may occur, but cannot be

guaranteed.

Figure 5.10 is a large mostly empty environment to illustrate points far from any

76

www.manaraa.com

edge which the robot cannot be guaranteed to cover. This environment is interesting

because while it is mostly open and therefore easy for the underlying planner to

navigate the obstacles, coverage is difficult for the same reason. Even though the

robot is able to navigate to every edge of the environment for every value of θmax

save the last two, the rate at which coverage drops is dramatic. This occurs in the

“shadow” created by the larger corner obstacles. In the work by Erickson et al. [80],

it was discovered that perpendicular edges forming a convex vertex are useful in

reducing uncertainty by driving it toward a single point—the convex vertex. Though

the behavior is not encoded in the planner, it is used and is inhibited by the obstacles.

We will later determine that for all but the largest values of θmax it maintains the

lowest percent coverage of any of our environments, despite the ease of navigation.

Figure 5.11 is a simple environment with two large holes separating the convex

vertices of the environment. The environment is symmetric across both axes and so

is least affected by the robot’s starting point. However, even this simple environment

illustrates the two main stumbling points of our navigation method—the long halls

along the top and bottom and the T-junction in those halls. Coverage also becomes

difficult at those points, due to the error accumulated through the necessary trans-

lation back-and-forth between the walls. At the point at which the robot is able to

translate into the vertical hallway, it has uncertainty such that it is unable to guaran-

tee coverage of the opening. Using a version allowing a human to “drive” the robot,

coverage could be achieved. The method is further discussed in Section 6.2.

The final environment we present in Figure 5.12 demonstrates the algorithm in

a more natural environment. There were fewer collinear points and less rectilinear

environment faces. Our planner did very well in this environment, both in terms of

navigation and coverage. While there are openings large enough to allow translation,

there are also many environment faces to provide temporary localization. Even at

the highest level of uncertainty, the planner was able to provide a path visiting every

77

www.manaraa.com

Figure 5.10 An environment with a relatively large empty region as well as
obstacles inhibiting our algorithm’s localization method.

convex vertex of the environment and was only unable to guarantee coverage of those

portions of the environment distant from faces.

In all cases, save the environment in Figure 5.10, the algorithm achieved close to

100% coverage at θmax = ±0.5 degrees.

To compare performance in the different environments, we calculated, for each

θmax, the volume of W contained in the certainly covered region. The least structured

environment from Figure 5.12 was clearly best handled by the algorithm. Whether

78

www.manaraa.com

Figure 5.11 A simple environment with two large holes. The robot began in the
lower left corner and became stuck there as θmax reached ±3 degrees.

this is a function of the decomposition method or the method itself is not apparent.

Not surprising, the environment for which our algorithm performs worst is the mostly

empty Figure 5.10. This environment’s obstacle-blocked convex vertices and largely

empty center is ideally suited to thwart our planner. On the graph of our planner’s

coverage Figure 5.9, the point at which there is no path back into inner portion of the

map is clearly visible at θmax = ±2.5◦. The brick-shaped environment in Figure 5.11

has a fairly shallow loss of coverage except for the point at which the center hallway

is lost—when θmax reaches ±1.5◦.

These results are not unexpected due to the navigation method. Even with many

more data points the behavior likely remain a gradual loss of coverage as error in-

creases until some section of the environment is lost and a dramatic reduction is seen

in coverage.

79

www.manaraa.com

Figure 5.12 A more natural cave-like environment. As error grew, the robot
retained the ability to navigate around most of the environment, but not the ability
to cover the more spacious open areas. This environment demonstrates the methods
ability to deal with non-uniform features.

80

www.manaraa.com

Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

E
n
v
ir
o
n
m
en
t
R
a
ti
o
C
o
v
er
ed

θmax In Degrees

Figure 5.13 A plot comparing the performance of the algorithm in the four
different environments when accuracy degrades as θmax is allowed to grow.

81

www.manaraa.com

Chapter 6

Conclusion

In both our Dubins coverage and blind coverage algorithms, the critical decision-

making begins with the decomposition. In Dubins coverage, we sought some minimal

amount of coverage, while in blind coverage we sought states which resulted in the

most coverage possible by a single action; other states were just in place to translate

to those states allowing coverage. The difference between the two problems is one of

state estimation. In the Dubins coverage model, the robot may always determine its

location based on an oracle—a sensor which can answer some question with veracity.

The question, obviously, being “what is my state?” The robot model used in blind

coverage needs to keep some idea of state based on previous actions. This is called

the robot’s information state (I-state).

The need to calculate and maintain an I-state determines the sort of discretization

into which we can decompose the environment. We need states large enough to

contain accumulated error represented by an I-state. Because there optimality is not

a requirement, do not seek to provide the algorithm with more states than what

are required to provide coverage. Our goal is simply to provide enough states to

allow the planner a chance at complete coverage. From this point of view, our goal

with Dubins coverage is to provide every possible useful state for the robot and let

the planner choose which set of states results in an optimal circuit. As stated in

Chapter 1, we consider the problem from two different angles—first, given complete

and constant knowledge of state can we determine the optimal path for coverage,

second, what does a coverage plan look like when the translation problem must be

82

www.manaraa.com

solved simultaneously?

6.1 Dubins Coverage

Our stated goal in Dubins coverage is, given perfect knowledge of state, calculate the

shortest possible path to completely cover a given environment. We proved that an

optimal coverage path will require the solution to an NP-Complete problem running

in O(2n
√

n) time [13,54], where n is the number of discrete locations a robot must visit

to ensure complete coverage. This implies an algorithm very sensitive to environment

discretization. The reason the algorithm in [107] is able to run in polynomial time is

due to trade offs made in their very clever discretization.

Rather than mapping their graph vertices to some unit of coverage and graph

edges to the non-coverage translation between states, the authors mapped coverage

(via cells) to graph edges and states to the critical points which created the coverage

cells. They were careful to ensure that all edges were required and that a circuit

existed without covering a cell multiple times. That is, they constructed the graph

to contain an Eulerian circuit [15]. This allowed them to solve their problem as an

instance of the Chinese postman problem (CPP), running in polynomial time [34].

The CPP algorithm is stated as: given a graph, determine the shortest circuit which

visits every graph edge at least once. The solution to CPP is an Eulerian tour.

Open problems

Decomposition: An observation made as a result this study is that even with

perfect knowledge of state, coverage is still a hard problem. When the navigation

problem is solved, if one requires an optimal plan for coverage, there still exists a

very difficult problem. In our decomposition, we made certain assumptions about

the environment—there is a “best” axis with which we could align coverage. In any

83

www.manaraa.com

φ φ

Figure 6.1 (left)An environment for which there is no single axis of coverage by
which translations between coverage passes is minimized. (right)A decomposition of
the environment such that it is covered along different axes.

unstructured environment, this is unlikely to be the case, such as the Lake Murray

example in There is no obvious single axis of coverage. Figure 6.2. This is an im-

portant failure by both of our discretizations. The Boustrophedon coverage strategy

can be effective because it minimizes time spent not covering the environment. To

be most effective, however, it requires passage along the axis aligned with some idea

of the length of the free space—the longest chord aligned with some axis. Consider

the left image from Figure 6.1.

The left image depicts how our algorithm might decompose the environment to

create coverage nodes for our graph. Ideally, a planning algorithm would divide the

environment into at least two axes of coverage. One axis would be used to cover the

diagonal region at the top, one to cover the x/y-axis-aligned area at the bottom as

illustrated in the right image of Figure 6.1. A recent method presented by Brown

and Waslander [20] considered a decomposition based on “growing” the environment

edges to constrict the environment. This approach likely holds a good deal of promise

in the decomposition. Brown and Waslander use their constriction method to create

a single path of coverage, by blending the cells into one large continuous cell. It would

84

www.manaraa.com

Figure 6.2 A geometric representation created from a satellite map of Lake Murray
near Columbia, SC.

be worthwhile to try leaving them as cells and allowing our planner to attempt to

order passage. This is necessary because our model has non-holonomic constraints.

Dubins path planning with obstacles: In our decomposition, we avoid the in-

troduction of environment obstacles. In the case of airborne robots this is not a bad

assumption with sufficient altitude. It is equally true with sufficient depth and a

robot boat. However there exist many cases in which some idea of obstacles is neces-

sary. This seems like a simple extension at first: devise a method to determine a path

between two nodes, if a path is found add an edge, profit [84]. However our decom-

position may be unable to find edges when obstacle space shares a border with space

which must be covered. If they share a border and the decomposition is such that a

vertex begins or ends at obstacle space, then there will be no safe action entering or

exiting the vertex, respectively.

The standard method for dealing with obstacles like this would have us use a

Minkowski sum of the obstacle with a vector of magnitude ρ. This will provide the

necessary space to allow coverage of each obstacle, but will incorrectly remove areas

85

www.manaraa.com

ρ

Figure 6.3 Creating a Minkowski sum from the obstacle edges of the environment
and a vector of magnitude ρ.

the robot could actually cover. Observe in Figure 6.3, if the direction of coverage

is the y-axis, then much of the environment is unnecessarily avoided—that is, the

outward growth along the x-axis of the obstacle space.

While in our particular case this can be remedied by a custom version of the

process avoiding growth perpendicular to the direction of coverage, it becomes inter-

esting to consider this problem if a complete solution is desired. How are the obstacles

grown to ensure that navigation through a space can be achieved?

6.2 Blind Coverage

When we began consideration of the problem of blind coverage, we created a tool

which allowed a human to “drive” the robot. We found several strategies to further

progress of coverage. Our algorithm makes explicit use of no strategy. Its ability to

cover the environment depends entirely on the discretization step. The discretization

step, unfortunately makes almost no use of domain specific knowledge of the problem.

The second thing which becomes obvious when driving the robot is that some edges

are worth more than others, but due to navigation and the coverage provided during

navigation, it is not clear how to weight edges.

86

www.manaraa.com

θmax

θmax

Figure 6.4 A strategy by which a robot might remain localized well enough to
guarantee coverage of a T-junction.

Future work

Two explorations which may be useful are the application of a model-aware environ-

ment decomposition and a directed path generation algorithm.

Model-aware decomposition: When given the task of driving the model robot

in an environment, a human noticed a useful strategy for covering the area of a T-

junction. It was obvious that the three perpendicular walls provide a means to remain

localized well enough to cover the area. Figure 6.4 illustrates a strategy whereby a

planner may localize the robot using the perpendicular walls of the T-junction. The

transition across the hall is not shown, but allows the strategy to be mirrored from

what is shown. The robot makes sweeps, passing from the inner hallway into the outer

and back-again. Our current algorithm makes no use of the relationship between θmax

and nodes more likely to have translations to and from others.

The decomposition in our blind navigation work [72] used a ray-extension algo-

rithm between sets of “visible” environment vertices to generate sets of points along

87

www.manaraa.com

the edges of the environment in an effort to make use of the relationship between

θmax and safe translations. For each pair of visible environment vertices cicj of the

environment, we extended rays from ci in the directions ci − cj ± θmax and cj in the

directions cj − ci ± θmax. The resulting intersections were then used along with the

environment edge vertices to guide a “wallpaper” process similar to this thesis. It

would be interesting to both replace and augment the current “wallpaper” strategy.

Additionally, though we do not specifically include convex vertices in the nodes, in-

troduction of our corner-finding strategy would allow us to include them and is an

obvious next step.

Path generation: We make no claims of optimality nor do we attempt to reduce

the length of the paths generated by our planner. This is a two-fold problem. In

the first step, one must choose a set of necessary edges which covers the environment

and in the second choose an ordered list of edges which includes all those from the

necessary set. Our current method takes edges in no particular order and, if the edge

provides some new coverage, adds it and the plan to reach it and return to the start

node to the path. While it might seem tempting to simply order their selection by

the volume of the area of the map covered, this value will change as other edges are

selected. Unless every edge is updated each time an edge is selected, the order will

quickly grow stale and would offer nothing more than random selection.

An idea which may be worth investigating is keeping some idea of how much

edges are adding to coverage. When the “next biggest” edge is selected, the amount

of coverage offered is compared to the threshold and if it is currently too small,

its coverage (and therefore weight) is updated and it is placed back into the edge

collection. While eventually many edges may need be updated, it would supply an

idea of what is a “good edge” based on what has been seen. We provide a rough

sketch of our idea in Algorithm 6. The algorithm ends when there are no edges

88

www.manaraa.com

Algorithm 6 ComputeCoverEdges2(pq, G)

1: CCR ← empty region
2: UpdateThreshold(∅, CCR)
3: threshold ← CalculateThreshold(∅)
4: P ← AllPairsShortestPath(G)
5: E ← empty set of edges
6: Q← MaxHeapify(edges of G)
7: while not Empty(Q) do
8: e← Remove(Q)
9: S ← P [pq][source[e]]

10: T ← P [target[e]][pq]
11: if S 6= ∅ and T 6= ∅ and coverage[e] \ CCR 6= ∅ then
12: threshold

′ ← CalculateThreshold(coverage[e])
13: if threshold

′ ≤ threshold then
14: E ← E

⋃

e
15: UpdateThreshold(threshold

′

, threshold)
16: threshold ← CalculateThreshold(coverage[e])
17: else
18: coverage[e] ← coverage[e] \ CCR

19: if coverage[e] 6= ∅ then
20: Push(e, Q)
21: end if
22: end if
23: end if
24: end while
25: return E

remaining to which the robot can translate which offer additional coverage and the

edges have their coverage computed when they are added to the graph. The volume

of an edge’s coverage area adds to the current CCR is its weight. The mechanism

to compute and maintain the threshold is left ambiguous as a correct strategy is not

immediately evident. Likely it must keep up with a history of edges’ additions to

the CCR and offer a comparison of what any new edge contributes as some ratio of

additional coverage.

Notice that the output of Algorithm 6 is not a plan for coverage, but a set of edges

which results in coverage of the environment. A naive approach might be to solve the

problem as a rural Chinese Postman Problem, a known NP-Hard problem [69]. While

89

www.manaraa.com

we have taken no steps to prove any aspect of blind coverage’s hardness, given our

proof of optimal Dubins coverage, it would not be surprising to discover this problem

is at least as hard.

Open problems

Probably the most outstanding question left open by blind coverage is how to opti-

mally discretize the environment. Stated exactly, what sort of discretization results

in a graph containing the shortest path to cover the environment? From our previous

work, we know that actions between states result in more coverage when the edges

from which the action begins and ends are more perpendicular edges. This occurs

due to the way error is modeled. Actions perpendicular to an edge result in the

largest accumulation of error. The more parallel an action is to the edge, the less

error accumulates.

Optimal decomposition: Even though armed with this knowledge, our planner

still uses a nearly-generic state generation method. Our first planner was intended to

include on the robot’s initial position and base future states on that position. The idea

was to start at the robot’s beginning state and perform a forward search through the

environment searching for states. Algorithm 7 provides a rough sketch for a method

to generate states from a given starting point along all possible directions, discretized

by some δ. The algorithm is sensitive to the parameter because both the number of

states generated by the algorithm, as well as the location of the states themselves are

dependent on it; the number of states being capped at ⌊2π
δ
⌋.

The rest of our method is presented in Algorithm 8. Given a starting point, the

algorithm begins a loop calling GenerateStates from that starting point which

sweeps around the starting point and makes note of every line segment to which the

robot could translate with a single action safely. If those line segments are new, then

90

www.manaraa.com

Algorithm 7 GenerateStates(pq, W, θmax, δ)

1: V ← {}
2: d← 0
3: while d < 2π do
4: dq ← d + θmax

5: tq ← ShootRay(W, q, dq)
6: dp ← d− θmax

7: tp ← ShootRay(W, p, dp)
8: if HasEdge(W, pq, tqtp, θmax) then
9: V ← V

⋃

tqtp

10: end if
11: d← d + δ
12: end while
13: return V

Algorithm 8 ForwardSearch(pq, W, θmax, δ)

1: Q← {}
2: Push(Q, pq)
3: V ← {}
4: while not IsEmpty(Q) do
5: q ← Pop(Q)
6: S ← GenerateStates(q, W, θmax, δ)
7: for s ∈ S and s 6∈ V do
8: V ← V

⋃

s
9: Push(Q, s)

10: end for
11: end while

it collects them into the vertices of the graph and considers GenerateStates for

each. The structure Q is purposely left ambiguous between a queue and a stack. From

what limited analysis we performed, there was no appreciable difference between the

two. The halting condition for the loop is when no new state locations are discovered.

Obviously the process could go on for a very long time depending on the step size

of the sweep and the definition of equality. In practice, we did not get good results

for this method. It generated far too many nodes. In addition to consuming large

amounts of resources to create, the runtime of our coverage algorithm was untenable.

The optimal method to decompose the environment, of course, must be derived

91

www.manaraa.com

from the goal—coverage. In a most basic sense, the environment would be decom-

posed based on the coverage shape of the robot’s actions. Segments or states, would

then be created to cover the decomposition. In this formulation, the edges are gener-

ated first and then the states which must exist to support the edges generated second.

Once the segments are generated, then more would need to be added to allow trans-

lation and localization between the source and target nodes for the coverage edges.

Generating these without sampling or arbitrary discretization has the trappings of

an intractable problem.

Expanding uncertainty Another open question we leave is that of determining

the largest amount of uncertainty we can allow in robot state. In our current definition

of safe states resulting from safe actions all states must lie along a single environment

edge. We note that some state might span multiple environment edges while still al-

lowing for manageable state estimation and in some cases even allow some guaranteed

coverage from those states. Any complete decomposition of the environment for this

robot model must allow states such as these to exist. It is currently unclear what

changes are necessary for tests to ensure that localization can be maintained to and

from states such as this. Likely there would be several new approaches required to

test for different the different sorts of edge-spanning nodes that could result. The two

main divisions of spanning nodes would be nodes which span two edges which share

a vertex and spanning nodes which span two edges that do not share a vertex. In the

case of edges which share a vertex, there are only two options, those which span a

convex vertex as illustrated in Figure 6.5 and nodes which span a reflex vertex. The

other class of spanning nodes offers much more variation because they need not be

close. An error cone which projects over a hole, for instance might span two edges

which are very close to one another in two axes along with a third edge far from the

first two.

92

www.manaraa.com

u
−

θ m
ax

u
+
θ
m
ax

pk

ρ

rk

rk+1
qk+1

qk

Figure 6.5 Computing the CCR for a single action from a state spanning more
than one environment edge.

Max(θmax) The last open question we leave is that of determining a correlation

or calculation from the largest amount of error our robot model experiences to the

amount of coverage the planner can guarantee for that robot. In all of our experi-

ments, it was obvious that as θmax increased, coverage decreased. Because we do not

have a complete algorithm, it is not currently possible to address the question, even

though it is true that for any θmax, there exists some largest area we can cover. We

offer some insight in determining those points too far from any edge to be covered,

but do not consider the way in which navigation fails as error increases.

93

www.manaraa.com

Bibliography

[1] E. U. Acar and H. Choset, Complete sensor-based coverage with extended-range
detectors: A hierarchical decomposition in terms of critical points and voronoi
diagrams, Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2001.

[2] , Robust sensor-based coverage of unstructured environments, Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.

[3] Ercan U. Acar and Howie Choset, Sensor-based coverage of unknown environ-
ments: Incremental construction of morse decompositions, The International
Journal of Robotics Research 21 (2002), no. 4, 345–366.

[4] Ercan U. Acar, Howie Choset, Alfred A. Rizzi, Prasad N. Atkar, and Douglas
Hull, Morse decompositions for coverage tasks, The International Journal of
Robotics Research 21 (2002), no. 4, 331–344.

[5] Ercan U. Acar, Howie Choset, Yangang Zhang, and Mark Schervish, Path plan-
ning for robotic demining: Robust sensor-based coverage of unstructured envi-
ronments and probabilistic methods, The Int. Journal of Robotics Research 22
(2003), 441–466.

[6] Autonomous Field Robotics Laboratory (AFRL),
https://afrl.cse.sc.edu/afrl/home/ Last Accessed: 2018-10-28.

[7] Noa Agmon, Noam Hazon, Gal A Kaminka, and The MAVERICK group, The
giving tree: constructing trees for efficient offline and online multi-robot cover-
age, Annals of Mathematics and AI 52(2-4) (2008), 143–168.

[8] S. Akella, W. Huang, K. M. Lynch, and M. T. Mason, Parts feeding on a
conveyor with a one joint robot, Algorthmica 26 (2000), no. 3, 313–344.

[9] S. Akella and M. Mason, Posing polygonal objects in the plane by pushing,
International Journal of Robotics Research 17 (1998), no. 1, 70–88.

94

www.manaraa.com

[10] James Arvo and David Kirk, Fast ray tracing by ray classification, SIGGRAPH,
1987.

[11] Prasad N Atkar, David C Conner, Aaron Greenfield, Howie Choset, and Al-
fred A Rizzi, Uniform coverage of simple surfaces embedded in R

3 for auto-body
painting, Proc. Workshop on the Algorithmic Foundations of Robotics, 2004.

[12] Gustavo S. C. Avellar, Guilherme A. S. Pereira, Luciano C. A. Pimenta, and
Paulo Iscold, Multi-UAV Routing for Area Coverage and Remote Sensing with
Minimum Time, Sensors 15(11) (2015), 27783.

[13] Richard Bellman, Dynamic programming treatment of the travelling salesman
problem, J. ACM 9 (1962), no. 1, 61–63.

[14] R.-P. Berretty, K. Goldberg, M. Overmars, and F. Van der Stappen, Trap design
for vibratory part feeders, International Journal of Robotics Research 20 (2001),
no. 11, 0–0.

[15] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph theory 1736–1936, Ox-
ford(Clarendon Press), 1976.

[16] A. Blum, P. Raghavan, and B. Schieber, Navigating in unfamiliar geometric
terrain, SIAM Journal on Computing 26 (1997), no. 1, 110–137.

[17] M. Blum and D. Kozen, On the power of the compass (or, why mazes are easier
to search than graphs), Proc. IEEE Symposium on Foundations of Computer
Science, 1978, pp. 132–142.

[18] Prosenjit Bose and Marc Van Kreveld, Generalizing monotonicity: on recogniz-
ing special classes of polygons and polyhedra, International Journal of Compu-
tational Geometry & Applications 15 (2005), no. 06, 591–608.

[19] Boston Dynamics Robots, https://www.bostondynamics.com/robots Accessed:
2018-09-25.

[20] S. Brown and S. L. Waslander, The constriction decomposition method for cov-
erage path planning, 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2016, pp. 3233–3238.

[21] A. Del Bue, M. Tamassia, F. Signorini, V. Murino, and A. Farinelli, Visual
coverage using autonomous mobile robots for search and rescue applications,

95

www.manaraa.com

2013 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Oct 2013, pp. 1–8.

[22] J. F. Canny, The complexity of robot motion planning, MIT Press, Cambridge,
MA, 1988.

[23] B. Chazelle and L. G. Guibas, Visibility and intersection problems in plane
geometry, Discrete and Computational Geometry 4 (1989), 551–589.

[24] Young-Ho Choi, Tae-Kyeong Lee, Sang-Hoon Baek, and Se-Young Oh, Online
complete coverage path planning for mobile robots based on linked spiral paths
using constrained inverse distance transform, Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009.

[25] H. Choset, E. Acar, A.A. Rizzi, and J. Luntz, Exact cellular decompositions in
terms of critical points of morse functions, Proc. IEEE International Conference
on Robotics and Automation, 2000, pp. 2270–2277.

[26] H. Choset and J. Burdick, Sensor based motion planning: Incremental con-
struction of the hierarchical generalized Voronoi graph, International Journal of
Robotics Research 19 (2000), no. 2, 126–148.

[27] , Sensor based motion planning: The hierarchical generalized Voronoi
graph, International Journal of Robotics Research 19 (2000), no. 2, 96–125.

[28] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun, Principles of robot motion: Theory, algorithms, and implemen-
tations, MIT Press, Boston, MA, 2005.

[29] Howie Choset, Coverage for robotics - a survey of recent results, Annals of
Mathematics and Artificial Intelligence 31 (2001), 113–126.

[30] Howie Choset and Philippe Pignon, Coverage path planning: The boustrophedon
cellular decomposition, International Conference on Field and Service Robotics
(Canberra, Australia), 1997.

[31] X. Deng, T. Kameda, and C. H. Papadimitriou, How to learn an unknown
environment I: The rectilinear case, Journal of the ACM 45 (1998), no. 2,
215–245.

[32] B. R. Donald, On information invariants in robotics, Artificial Intelligence 72
(1995), 217–304.

96

www.manaraa.com

[33] L. E. Dubins, On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents, American
Journal of Mathematics 79 (1957), no. 3, 497–516.

[34] Jack Edmonds and Ellis L. Johnson, Matching, euler tours and the chinese
postman, Mathematical Programming 5 (1973), no. 1, 88–124.

[35] S. P. Engelson and D. V. McDermott, Error correction in mobile robot map
learning, Proceedings 1992 IEEE International Conference on Robotics and
Automation, May 1992, pp. 2555–2560 vol.3.

[36] M. Erdmann and M. T. Mason, An exploration of sensorless manipulation,
IEEE Transactions on Robotics and Automation 4 (1988), no. 4, 369–379.

[37] M. A. Erdmann, Using backprojections for fine motion planning with uncer-
tainty, International Journal of Robotics Research 5 (1986), no. 1, 19–45.

[38] , Understanding action and sensing by designing action-based sensors,
International Journal of Robotics Research 14 (1995), no. 5, 483–509.

[39] L. Erickson, J. Knuth, J. M. O’Kane, and S. M. LaValle, Probabilistic localiza-
tion with a blind robot, Proc. IEEE International Conference on Robotics and
Automation, 2008.

[40] FAA aerospace forecast, https://www.faa.gov/data_research/aviation/
aerospace_forecasts/ media/FY2016-36_FAA_Aerospace_Forecast.pdf,
Accessed: 2018-09-25.

[41] Farm Bot, https://farm.bot/, Accessed: 2018-09-25.

[42] P. Fazli, A. Davoodi, P. Pasquier, and A.K. Mackworth, Complete and ro-
bust cooperative robot area coverage with limited range, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010, pp. 5577–5582.

[43] Robert W. Floyd, Algorithm 97: Shortest path, Commun. ACM 5 (1962), no. 6,
345–348.

[44] P Mojiri Forooshani and M Jenkin, Sensor coverage with a heterogeneous fleet
of autonomous surface vessels, IEEE International Conference on Information
and Automation, 2015, pp. 571–576.

97

www.manaraa.com

[45] G. N. Frederickson, M. S. Hecht, and C. E. Kim, Approximation algorithms for
some routing problems, 17th Annual Symposium on Foundations of Computer
Science (sfcs 1976), Oct 1976, pp. 216–227.

[46] Y. Gabriely and E. Rimon, Spiral-stc: an on-line coverage algorithm of grid
environments by a mobile robot, Proc. of the IEEE Int. Conf. on Robotics and
Automation, vol. 1, 11-15 May 2002, pp. 954 – 960.

[47] Enric Galceran and Marc Carreras, A survey on coverage path planning for
robotics, Robotics and Autonomous Systems 61 (2013), no. 12, 1258–1276.

[48] Michael R. Garey and David S. Johnson, Computers and intractability; a guide
to the theory of np-completeness, W. H. Freeman & Co., New York, NY, USA,
1990.

[49] A. S. Glassner, Space subdivision for fast ray tracing, IEEE Computer Graphics
and Applications 4 (1984), no. 10, 15–24.

[50] K. Y. Goldberg, Orienting polygonal parts without sensors, Algorthmica 10
(1993), 201–225.

[51] Enrique Gonzalez, Oscar Alvarez, Yul Diaz, Carlos Parra, and Cesar Bustacara,
BSA: a complete coverage algorithm, Proc. IEEE International Conference on
Robotics and Automation, 2005.

[52] R. Graham, M.R. Garey, and D.S. Johnson, Some np-complete geometric prob-
lems, 8th Annual ACM Symposium on Theory of Computing, 1976, pp. 10–22.

[53] N. Hazon and G.A. Kaminka, Redundancy, efficiency and robustness in multi-
robot coverage, IEEE International Conference on Robotics and Automation
(ICRA), 2005, pp. 735–741.

[54] Michael Held and Richard M. Karp, A dynamic programming approach to se-
quencing problems, Proceedings of the 1961 16th ACM National Meeting (New
York, NY, USA), ACM ’61, ACM, 1961, pp. 71.201–71.204.

[55] W.H. Huang, Optimal line-sweep-based decompositions for coverage algorithms,
Proc. the IEEE Int. Conf. on Robotics and Automation, vol. 1, 2001, pp. 27 –
32.

[56] iRobot autonomous floor-cleaning robot, https://patents.google.com/patent/
US6883201B2/en, Accessed: 2018-10-13.

98

www.manaraa.com

[57] iRobot reports record fourth-quarter and full-year revenue,
http://media.irobot.com/2018-02-07-iRobot-Reports-Record-Fourth-Quarter-
and-Full-Year-Revenue, Accessed: 2018-09-25.

[58] I. Kamon and E. Rivlin, Sensory-based motion planning with global proofs, IEEE
Transactions on Robotics and Automation 13 (1997), no. 6, 814–822.

[59] I. Kamon, E. Rivlin, and E. Rimon, Range-sensor based navigation in three
dimensions, Proc. IEEE International Conference on Robotics and Automation,
1999.

[60] Nare Karapetyan, Kelly Benson, Chris McKinney, Perouz Taslakian, and Ioan-
nis Rekleitis, Efficient multi-robot coverage of a known environment, Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems (Van-
couver, BC, Canada), Sept. 2017.

[61] Nare Karapetyan, Jason Moulton, Jeremy Lewis, Alberto Quattrini Li, Jason
O’Kane, and Ioannis Rekleitis, Multi-robot Dubins Coverage with Autonomous
Surface Vehicles, IEEE International Conference on Robotics and Automation
(Brisbane, Australia), May 2018, pp. 2373–2379.

[62] Peter Kimball, John Bailey, Sarah Das, Rocky Geyer, Trevor Harrison, Clay
Kunz, Kevin Manganini, Ken Mankoff, Katie Samuelson, Thomas Sayre-
McCord, Fiamma Straneo, Peter Traykovski, and Hanumant Singh, The whoi
jetyak: An autonomous surface vehicle for oceanographic research in shallow or
dangerous waters, Autonomous Underwater Vehicles (AUV), 2014.

[63] Chan Sze Kong, Ai Peng New, and Ioannis Rekleitis, Distributed coverage with
multi-robot system, Proc. of the IEEE International Conference on Robotics
and Automation, 2006, pp. 2423 – 2429.

[64] S. M. Kristek and D. A. Shell, Orienting deformable polygonal parts without
sensors, 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct 2012, pp. 973–979.

[65] Ratnesh Kumar and Haomin Li, On asymmetric tsp: Transformation to sym-
metric tsp and performance bound, Numerische Mathematik (2002), 63–99.

[66] , On asymmetric TSP: Transformation to symmetric tsp and perfor-
mance bound, Tech. report, University of Kentucky, Department of Electrical
Engineering, Feb 2014.

99

www.manaraa.com

[67] Jean-Claude Latombe, Robot motion planning, Kluwer Academic Publishers,
Norwell, MA, USA, 1991.

[68] A. Lazanas and J. C. Latombe, Landmark-based robot navigation, Proc. Na-
tional Conference on Artificial Intelligence (AAAI), 1992.

[69] J. K. Lenstra and A. H. G. Rinnooy Kan, Complexity of vehicle routing and
scheduling problems, Networks 11 (1981), no. 2, 221–227.

[70] J. S. Lewis, D. A. Feshbach, and J. M. O’Kane, Guaranteed navigation with an
unreliable blind robot, Proc. IEEE International Conference on Robotics and
Automation, 2010.

[71] Jeremy S. Lewis, William Edwards, Kelly Benson, Ioannis Rekleitis, and Ja-
son M. O’Kane, Semi-boustrophedon coverage with a dubins vehicle, Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017.

[72] Jeremy S. Lewis and Jason M. O’Kane, Planning for provably reliable navigation
using an unreliable, nearly sensorless robot, International Journal of Robotics
Research 32 (2013), no. 11, 1339–1354.

[73] LocalSolver, http://www.localsolver.com.

[74] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, Automatic synthesis of
fine-motion strategies for robots, International Journal of Robotics Research
3 (1984), no. 1, 3–24.

[75] V. J. Lumelsky and S. Tiwari, An algorithm for maze searching with azimuth
input, Proc. IEEE International Conference on Robotics and Automation, 1994,
pp. 111–116.

[76] M. Moll and M. Erdmann, Manipulation of pose distributions, International
Journal of Robotics Research 21 (2002), no. 3, 277–292.

[77] Charles E. Noon and James C. Bean, An efficient transformation of the general-
ized traveling salesman problem, INFOR: Information Systems and Operational
Research 31 (1993), no. 1, 39–44.

[78] Jerome Le Ny, Eric Feron, and Emilio Frazzoli, On the dubins traveling salesman
problem, IEEE Trans. Automat. Contr. 57 (2012), 265–270.

100

www.manaraa.com

[79] C. Ó. Dúnlaing and C. K. Yap, A retraction method for planning the motion of
a disc, Journal of Algorithms 6 (1982), 104–111.

[80] J. M. O’Kane and S. M. LaValle, Almost-sensorless localization, Proc. IEEE
International Conference on Robotics and Automation, 2005.

[81] , Sloppy motors, flaky sensors, and virtual dirt: Comparing imperfect
ill-informed robots, Proc. IEEE International Conference on Robotics and Au-
tomation, 2007.

[82] José Manuel Palacios-Gasós, Zeynab Talebpour, Eduardo Montijano, Carlos
Sagüés, and Alcherio Martinoli, Optimal path planning and coverage control
for multi-robot persistent coverage in environments with obstacles, Proc. IEEE
International Conference on Robotics and Automation, IEEE, 2017, pp. 1321–
1327.

[83] Christos H. Papadimitriou, The euclidean travelling salesman problem is np-
complete, Theoretical Computer Science 4 (1977), no. 3, 237 – 244.

[84] Trey Parker and Matt Stone, Gnomes, Dec 1998.

[85] Liam Paull, Carl Thibault, Amr Nagaty, Mae Seto, and Howard Li, Sensor-
driven area coverage for an autonomous fixed-wing unmanned aerial vehicle,
IEEE transactions on cybernetics 44 (2014), no. 9, 1605–1618.

[86] Preparata, P., Franco Shamos, and Michael Ian, Computational geometry : An
introduction, Springer, 01 1985.

[87] Michael Yu Rachkov, Lino Marques, and AnÍbal T de Almeida, Multisensor
demining robot, Autonomous robots 18 (2005), no. 3, 275–291.

[88] Ioannis Rekleitis, Jean-Luc Bedwani, Erick Dupuis, and Pierre Allard, Path
planning for planetary exploration, Canadian Conference on Computer and
Robot Vision (CRV) (Windsor, ON, Canada), May 2008, pp. 61–68.

[89] Ioannis Rekleitis, Vincent Lee-Shue, Ai Peng New, and Howie Choset, Limited
communication, multi-robot team based coverage, Proc. of the 2004 IEEE Int.
Conf. on Robotics and Automation, 2004.

[90] Ioannis Rekleitis, AiPeng New, Edward Samuel Rankin, and Howie Choset,
Efficient boustrophedon multi-robot coverage: an algorithmic approach, Annals
of Mathematics and AI 52(2-4) (2008), 109–142 (English).

101

www.manaraa.com

[91] A. Renzaglia, L. Doitsidis, S. A. Chatzichristofis, A. Martinelli, and E. B.
Kosmatopoulos, Distributed multi-robot coverage using micro aerial vehicles,
Mediterrean Conference on Control Automation (MED), June 2013, pp. 963–
968.

[92] Scott D. Roth, Ray casting for modeling solids, Computer Graphics and Image
Processing 18 (1982), 109–144.

[93] Nicholas Roy and Sebastian Thrun, Coastal navigation with mobile robots, Ad-
vances in Neural Processing Systems, 1999, pp. 1043–1049.

[94] Haydar Sahin and Levent Guvenc, Household robotics: autonomous devices for
vacuuming and lawn mowing, IEEE Control Systems 27 (2007), no. 2, 20–96.

[95] K. Savla, F. Bullo, and E. Frazzoli, The coverage problem for loitering du-
bins vehicles, Decision and Control, 2007 46th IEEE Conference on, Dec 2007,
pp. 1398–1403.

[96] Ketan Savla, Emilio Frazzoli, and Francesco Bullo, On the point-to-point and
traveling salesperson problems for dubins’ vehicle., American Control Confer-
ence, June 2005, pp. 786–791.

[97] L Szirmay-Kalos and G Marton, Worst-case versus average case complexity of
ray-shooting, Computing 61(2) (1998), no. 2, 103–131.

[98] Pratap Tokekar, Joshua Vander Hook, David Mulla, and Volkan Isler, Sensor
planning for a symbiotic UAV and UGV system for precision agriculture, IEEE
Transactions on Robotics 32 (2016), no. 6, 1498–1511.

[99] B. Tovar, L. Guilamo, and S. M. LaValle, Gap Navigation Trees: Minimal
representation for visibility-based tasks, Proc. Workshop on the Algorithmic
Foundations of Robotics, 2004.

[100] Ben Tribelhorn and Zachary Dodds, Evaluating the Roomba: A low-cost, ubiq-
uitous platform for robotics research and education, Proc. IEEE International
Conference on Robotics and Automation, 2007.

[101] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H. Overmars,
Geometry and part feeding, Sensor Based Intelligent Robots, 2000, pp. 259–
281.

102

www.manaraa.com

[102] J.R. VanderHeide, Terrain coverage of an unknown room by an autonomous
mobile robot, Tech. report, Michigan State Univ, 12 1995.

[103] K. Sun V.J. Lumelsky, S. Mukhopadhyay, Dynamic path planning in sensor-
based terrain acquisition, 1990, pp. 462–472.

[104] D. E. Whitney, Real robots don’t need jigs, Proc. IEEE International Conference
on Robotics and Automation, 1986.

[105] Gerhard J. Woeginger, Combinatorial optimization - eureka, you shrink!, Com-
binatorial Optimization - Eureka, You Shrink! (Michael Jünger, Gerhard
Reinelt, and Giovanni Rinaldi, eds.), Springer-Verlag New York, Inc., New
York, NY, USA, 2003, pp. 185–207.

[106] Thaddeus A. Roppel Xin Yu and John Y. Hung, An optimization approach for
planning robotic field coverage, IECONN, 2015.

[107] Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis, Efficient complete cov-
erage of a known arbitrary environment with applications to aerial operations,
Autonomous Robots 36 (2014), no. 4, 365–381 (English).

[108] Z. Yao, Finding efficient robot path for the complete coverage of a known space,
Proc. of the IEEE Int. Conf. on Robotics and Automation (Beijing, China),
2006, pp. 3369–3374.

[109] Xiaoming Zheng, Sonal Jain, Sven Koenig, and David Kempe, Multi-robot forest
coverage, Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2005.

103

	University of South Carolina
	Scholar Commons
	Fall 2018

	Algorithms for Robot Coverage Under Movement and Sensing Constraints
	Jeremy S. Lewis
	Recommended Citation

	dissertation.dvi

